
Automatic Scheduling of Compute Kernels Across Heterogeneous
Architectures

Robert F. Lyerly

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Engineering

Binoy Ravindran, Chair
Cameron Patterson

Paul Plassmann

May 7, 2014
Blacksburg, Virginia

Keywords: Scheduling, Compilers, Heterogeneous Architectures, Runtime Systems,
High-Performance Computing

Copyright 2014, Robert F. Lyerly

Scheduling of Compute Kernels Across Heterogeneous Architectures Using
Machine Learning

Robert F. Lyerly

(ABSTRACT)

The world of high-performance computing has shifted from increasing single-core perfor-
mance to extracting performance from heterogeneous multi- and many-core processors due
to the power, memory and instruction-level parallelism walls. All trends point towards in-
creased processor heterogeneity as a means for increasing application performance, from
smartphones to servers. These various architectures are designed for different types of ap-
plications – traditional “big” CPUs (like the Intel Xeon or AMD Opteron) are optimized
for low latency while other architectures (such as the NVidia Tesla K20x or Intel Xeon Phi)
are optimized for high-throughput. These architectures have different tradeoffs and different
performance profiles, meaning fantastic performance gains for the right types of applications.
However applications that are ill-suited for a given architecture may experience significant
slowdown; therefore, it is imperative that applications are scheduled onto the correct pro-
cessor.

In order to perform this scheduling, applications must be analyzed to determine their execu-
tion characteristics (e.g. an application that contains a lot of branching may be better suited
to a traditional CPU). Traditionally this application-to-hardware mapping was determined
statically by the programmer. However, this requires intimate knowledge of the application
and underlying architecture, and precludes load-balancing by the system. We demonstrate
and empirically evaluate a system for automatically scheduling compute kernels by extracting
program characteristics and applying machine learning techniques. We develop a machine
learning process that is system-agnostic, and works for a variety of contexts (e.g. embed-
ded, desktop/workstation, server). Finally, we perform scheduling in a workload-aware and
workload-adaptive manner for these compute kernels.

This work is supported in part by US NSWC under contract N00178-09-D-3017/0022.

Acknowledgments

There are many people who helped me with this work, and for whom I am forever grateful.
I would like to thank the following people specifically for helping me obtain my degree:

Dr. Binoy Ravindran, for setting me down a research path I would never dream of pursuing,
and providing guidance in all of my research.

My committee members, Dr. Cameron Patterson and Dr. Paul Plassmann, for graciously
taking time out of their busy schedules to help me with this work.

Dr. Alastair Murray, for the many brainstorming sessions, in-depth technical conversations
about compilers, Linux mastery and being a steadfast friend through rough patches.

Dr. Antonio Barbalace, for his unbelievable knowledge of Linux internals and neverending
humor, despite any situation.

Kevin Burns, for his system administration skills and great friendship through our SSRG
careers.

The members of the System Software Research Group for their support, skill and friendship,
including Curt Albert, Brandon Amos, Saif Ansary, Michael Drescher and Shawn Furrow.

iii

Contents

1 Introduction 1

1.1 The Evolving Landscape of Processor Architectures 1

1.2 Current Limitations . 2

1.3 Research Contributions . 4

1.4 Thesis Organization . 5

2 Background 6

2.1 Architectures . 6

2.1.1 Central Processing Units . 6

2.1.2 Graphics Processing Units . 8

2.1.3 Manycore Coprocessors . 10

2.2 Parallel Programming Models . 11

2.2.1 OpenMP . 12

2.2.2 OpenCL . 12

3 Related Work 14

3.1 Architecture Characterization . 14

3.2 Machine Learning & Compilers . 15

3.3 Heterogeneous Scheduling . 16

3.4 Co-Scheduling . 18

4 Refactoring & Scheduling OpenMP Applications 20

iv

4.1 Design . 22

4.2 Implementation . 25

4.2.1 Refactoring Applications: The Partitioner Tool 26

4.2.2 Extracting Features from OpenMP Kernels 38

4.2.3 Heterogeneous Scheduling Daemon 40

4.2.4 Machine Learning . 42

4.3 Results . 46

4.3.1 General Overheads . 47

4.3.2 Setup 1: Opteron 6376 & Tesla C2075 47

4.3.3 Setup 2: Opteron 6376 & TILEncore-Gx36 53

5 Scheduling OpenCL Applications 57

5.1 Design . 58

5.2 Implementation . 60

5.2.1 OpenCL Runtime Support Library 61

5.2.2 Extracting Features from OpenCL Kernels 63

5.2.3 Extracting Hardware Features . 69

5.2.4 Changes to the Scheduler & Machine Learning 71

5.3 Results . 72

5.3.1 General Overheads . 73

5.3.2 Setup 1 . 73

5.3.3 Setup 2 . 76

5.3.4 Setup 3 . 77

5.3.5 Discussion . 81

6 Conclusion 84

6.1 Contributions . 84

7 Future Work 86

7.1 Partitioner . 86

v

7.2 Scheduling with External Workload . 87

7.3 Feature Selection/Extraction . 88

7.4 Further Evaluation . 88

vi

List of Figures

1.1 Speedup of benchmarks from the OpenDwarfs benchmark suite over execution
on a single x86 core . 2

4.1 Coprocessor Execution Model . 21

4.2 Valid & invalid classes for the partitioner . 28

4.3 Pragmas generated by the “Find Compatible Architectures” pass 28

4.4 Pragmas generated by the “Kernel Interface” pass 30

4.5 TILEncore-Gx36 initialization & wait loop (device-side) 31

4.6 Result of partitioning a matrix-multiply kernel (host-side) 32

4.7 TILEncore-Gx36 partition (host-side) . 33

4.8 TILEncore-Gx36 compute kernel (device-side) 34

4.9 Example call to get size and the red-black tree modification 36

4.10 Registering & unregistering the memory management runtime library 37

4.11 Partition boundary with features & scheduler calls 39

4.12 Scheduling compute kernels . 41

4.13 Artificial Neural Netowrk . 45

4.14 Computational kernel for stencil . 49

4.15 Setup 1 – Results of scheduling OpenMP kernels without external workload . 50

4.16 Setup 1 – Results of scheduling OpenMP kernels with one external application 50

4.17 Setup 1 – Results of scheduling OpenMP kernels with two external applications 51

4.18 Setup 1 – Results of scheduling OpenMP kernels with three external applications 51

4.19 Setup 2 – Results of scheduling OpenMP kernels with one external application 54

vii

4.20 Setup 2 – Results of scheduling OpenMP kernels with two external applications 55

4.21 Setup 2 – Results of scheduling OpenMP kernels with three external applications 55

5.1 Using OpenCL support library & scheduling API 62

5.2 Estimates for basic block counts based on heuristics 64

5.3 Coalesced memory . 65

5.4 Diagram of memory access from compute kernels in 5.3 67

5.5 OpenDwarfs benchmarks on “hulk” . 74

5.6 Parboil benchmarks on “hulk” . 75

5.7 Rodinia benchmarks on “hulk” . 75

5.8 OpenDwarfs benchmarks on “bob’ . 77

5.9 Parboil benchmarks on “bob” . 78

5.10 Rodinia benchmarks on “bob” . 78

5.11 OpenDwarfs benchmarks on “whitewhale” 79

5.12 Parboil benchmarks on “whitewhale” . 80

5.13 Rodinia benchmarks on “whitewhale” . 80

5.14 Overall speedups per system . 82

viii

List of Tables

4.1 Compute kernel characteristics allowed on various architectures 27

4.2 Compute kernel features collected from OpenMP applications 40

4.3 External workload features maintained by the scheduler 42

4.4 Architectures used for evalation of OpenMP scheduling 46

4.5 Scheduling overheads for OpenMP applications 47

4.6 Best architecture and predictions from our model for benchmarks 48

4.7 Cache statistics for stencil from perf . 49

5.1 Compute kernel features collected from OpenCL applications 66

5.2 Competitor features . 72

5.3 Model evaluation overheads . 73

5.4 Architectures in evaluation system “hulk” 74

5.5 Architectures in evaluation system “bob” . 76

5.6 Architectures in evaluation system “whitewhale” 79

ix

Chapter 1

Introduction

1.1 The Evolving Landscape of Processor Architectures

In recent years, processor architectures have shfited away from improving sequential perfor-
mance, or reducing instruction latency, in favor of increasing overall processor throughput by
enabling different levels of parallelism. This is due to the “brick wall”, a light-hearted name
for a collection of highly problematic processor architecture design issues. In his article “The
Free Lunch Is Over”, Herb Sutter describes three issues – the power wall, the instruction-
level parallelism wall and the memory wall [54]. While Moore’s law continues to hold true,
the power dissipated by these ever more complex processors grows with every generation –
increased power dissipation has resulted in stalled processor clock rates. Additionally, pro-
cessors are unable to extract more instruction-level parallelism from general applications,
as tricks such as speculative execution, out-of-order buffers and superscalar execution yield
smaller and smaller speedups. Finally, main memory has scaled in size but not in speed,
relative to the clock rates of processors.

Chip manufacturers have thrown in the metaphorical towel in regards to these problems,
and have instead decided to rethink chip design in favor of parallelism. Newer chips (from
smartphone processors like the Snapdragon 810 [4] to server CPUs such as the AMD Opteron
6376 [6]) have eschewed highly complex, latency-above-all designs in favor of simpler sym-
metric multiprocessor (SMP) that integrate multiple fully-functional processor cores on-die.
This enables task- and data-level parallelism for applications that have parallel work that is
able to be split among multiple processors. While scientific-computing applications are gen-
erally parallelizable, other applications such as Mozilla’s recently announced collaboration
with Samsung on their rendering engine Servo [2] can take advantage of multiple process-
ing units. Even embedded systems, which eschew runtime performance in favor of power
efficiency, have adopted this multicore approach. The trend for the foreseeable future is
parallel.

1

Robert F. Lyerly Chapter 1. Introduction 2

Figure 1.1: Speedup of benchmarks from the OpenDwarfs benchmark suite over execution
on a single x86 core

More recently, systems have incorporated many types of processors with wildly varying design
goals in order to provide high-performance execution for a variety of applications. Smart-
phones have a high amount of heterogeneity on-die with designs such as the Snapdragon 810.
This SoC includes up to 4 traditional CPUs, several GPU cores, several DSPs and a micro-
controller. Most workstations include traditionally “big” CPU cores and a discrete GPU
card (using chips from NVidia or AMD) over PCIe. Intel has been marketing their Xeon Phi
accelerator card [13] with plans to integrate it into motherboards with a dedicated socket [1].
In addition to parallelism, future computer systems will almost certainly be heterogeneous.

As figure 1.1 indicates, heterogeneity allows high performance for a variety of applications.
This graph shows the speedup of compute-intensive portions of benchmarks over execution
on a single x86 core when run on several different architectures1. All applications benefit from
parallelism, but each execute differently based on the architecture. Some of the benchmarks
have better performance on the 16 x86 host cores, while some have better performance on the
GPU. Interestingly, some applications exhibit slowdown if executed on a certain architecture.
However, the general trend indicates that parallelism and heterogeneity allow systems to
execute high-performance applications more efficiently than homogeneous systems. Thus,
we seek to utilize heterogeneity and parallelism to increase performance.

1.2 Current Limitations

Taking advantage of parallelism and heterogeneity can bring enormous performance benefits,
but requires significant developer effort and esoteric knowledge of the underlying architecture
to achieve maximum performance. Additionally, almost every heterogeneous-ISA device has

1These benchmarks were run on an AMD Opteron 6376 CPU, a Tilera TILEncore-Gx36 coprocessor and
an NVidia Tesla C2075 GPU

Robert F. Lyerly Chapter 1. Introduction 3

its own device-specific parallel programming model, meaning that developers must spend
time porting between various models to utilize different architectures2. These device-specific
models require the developer to manually manage memory consistency between the host and
device using device-specific APIs. This boilerplate code is tedious and error-prone, shifting
focus away from the core application logic where developer effort should be spent. Ideally
the programmer would write the compute-intensive portions of their application once and
have the compiler manage translation to device-specific models while extracting maximum
performance from that particular architecture. The compiler would ideally also handle data
transfers between host and device transparently.

Additionally, different high-performance compute-bound applications execute differently on
heterogeneous architectures based on the types of operations and the patterns of those oper-
ations. Additionally, depending on the problem size a given application may execute more or
less efficiently by adding parallelism and heterogeneity. There are many ways to address this
problem of deciding on which architecture a given application should execute its compute-
bound sections (hereafter referred to as scheduling). There are two general approaches that
previous work has taken:

1. Utilize past history – time the execution of the specified portion of the application and
utilize this knowledge to make future scheduling decisions.

2. Build a predictive model – build some sort of predictive model to make scheduling
decisions.

The first approach is reactive in nature and thus non-ideal, as it requires exhaustively evalu-
ating the compute-bound region on a variety of architectures to determine the ideal schedul-
ing. In addition, it is non-portable, does not adapt well to a varying workload and requires
maintaining a monotonically-increasing database of past execution history in order to make
scheduling decisions.

The second approach, if performed correctly, allows a more flexible and portable scheduler
to make decisions on a wide variety of systems with limited or no prior knowledge. Re-
cent approaches have used machine learning for the implementation of the scheduling logic.
Given a representative set of benchmarks, a properly designed and trained machine learning
model should be able to accurately predict on which architecture certain classes of appli-
cations should execute. However, the state-of-the-art in using machine learning to perform
scheduling of applications onto architectures is also limited:

1. The state-of-the-art models are trained in systems where the heterogeneous architec-
tures are vastly different, such as systems coupling a CPU with a discrete GPU ac-
celerator. Many emerging systems (especially in the embedded space) couple together

2OpenCL is an attempt to bridge this gap, but the quality of implementations vary from vendor to vendor

Robert F. Lyerly Chapter 1. Introduction 4

several types of architectures, such as traditional multicore CPUs with integrated GPUs
and DSPs, making the scheduling decision much more difficult. The Snapdragon 810
system-on-a-chip (SoC) processors combine multicore CPUs, a GPU and several DSPs
onto a single die, all programmable using Qualcomm’s development kits [4].

2. The models do not consider scheduling with respect to external workload. These models
all use a static/offline prediction model that always maps the application to a single
architecture. However, varying levels of external workload may affect the performance
of an application on an architecture which ultimately changes the scheduling decision.

3. The generated machine learning models are not portable. Models are generated on a
per system basis, meaning that the models generate predictions based on the relative
efficiency of the architectures in a system. This is problematic, given the proliferation
of heterogeneous architectures and the near infinite combinations of those architectures
within systems. Any new combination of architectures in a system requires incurring
heavy model generation costs.

We thus seek to address both the translation and scheduling problems in this work.

1.3 Research Contributions

In this thesis, we present the following contributions:

1. We implemented a partitioning tool that takes an application written using C and par-
allelized using the OpenMP parallel programming standard; it automatically analyzes
& refactors the application so the compute-intensive portions (including data transfers
and execution) can be executed on a variety of devices, including a multicore x86 host,
a manycore “smart network card” and a server-class GPU.

2. We implemented two feature extractor tools that characterize compute-intensive appli-
cations by generating a set of application features. These features are used as inputs
into the scheduler to make a scheduling decision.

3. We implemented a scheduling daemon that makes scheduling decisions for applications
based on their extracted features. The daemon uses IPC to communicate with clients;
it also maintains workload information about the devices in the system.

4. We generated machine learning models to make scheduling deicisions for applications.
We evaluated several different models, including models that incorporate external work-
load information and unified models that can be used for any combination of architec-
tures in a system.

Robert F. Lyerly Chapter 1. Introduction 5

1.4 Thesis Organization

The thesis is organized as follows:

• Chapter 2 presents background on the programming models & architectures used for
evaluation in this thesis.

• Chapter 3 presents related work in the area of heterogeneous scheduling.

• Chapter 4 presents the partitioning tool used to automatically refactor applications
to be able to execute on heterogeneous architectures. In addition, it discusses the
implementation of the feature extractor, the scheduling daemon, and generation of
machine learning models that incorporate external workload. We subsequently analyze
the performance generated models

• Chapter 5 presents a second approach to the scheduling problem using OpenCL ap-
plications that require no refactoring. We generate and evaluate a unified machine
learning model, i.e. a model that can be used for any combination of architectures in
a system.

• Chapter 6 recapitulates the lessons learned from the work, and chapter 7 discusses
possible future research directions.

Chapter 2

Background

2.1 Architectures

In this work we chose to investigate scheduling for a wide variety of architectures, intermixing
several types of architectures within several systems. There were three main classes of
architectures used in scheduling:

1. Central Processing Units (CPU) – classic general-purpose processors that are designed
to handle a variety of different types of applications.

2. Graphics Processing Units (GPU) – general-purpose highly parallel processors initially
designed for graphics computation with a recent shift towards general-purpose parallel
computation.

3. Manycore Coprocessors – accelerator add-on cards with dozens of simplified CPU cores.
There is no clear line between multicore and manycore, although multicore chips tend
to have 16 or fewer cores.

Below we discuss the three classes of architectures, and the specific models that were used
in this work.

2.1.1 Central Processing Units

The CPUs used in this work are modern “big” processors, with many of the latest advance-
ments in process technology and architectural innovation. CPUs are considered latency-
oriented processors in that they strive to execute a single thread of instructions as quickly
as possible (although this has changed in recent years with multicore and SIMD, which in-
troduce task-level and data-level parallelism, respectively). CPUs utilize instruction-level

6

Robert F. Lyerly Chapter 2. Background 7

parallelism to get as many instructions as possible “in-flight”. All of the processors we used
are multi-core, and some contain support for simultaneous multithreading. These processors
include out-of-order execution, are superscalar and superpipelined, and contain a SIMD-
processing unit per core. These chips also feature large caches and hardware prefetching
capabilities to hide memory access latencies. Finally, these chips contain variable, but high-
frequency clock rates. The three CPUs used in this work are the AMD Opteron 6376, the
Intel Core i7-4770 and the Intel Xeon E5-2695.

AMD Opteron 6376

The AMD Opteron 6376 is one of AMD’s highest-end server offerings, containing 16 CPU
cores with the 32 nm AMD Pileriver microarchitecture [6]. Each core contains a 4-way in-
struction decoder that can dispatch instructions to two integer clusters or a floating-point
unit. Each integer cluster contains two arithmetic logic units (ALU) and two address gener-
ator functional units, while the floating-point unit contains two SIMD-lanes and two fused
multiply-and-add (FMAD) units1. In terms of SIMD capabilities, each core supports SSE 4.2
(128-bit integer & floating-point operations) and AVX (256-bit floating-point operations).
This processor does not contain SMT support, meaning that the number of physical cores
on die is the number of cores reported by the operating system. The processor contains a 48
kB L1 and a 1 MB L2 cache per core, with a 16 MB L3 cache shared by all cores. Finally,
the processor is clocked at 2.3 GHz.

Intel Core i7-4770

The Core i7-4770 is one of Intel’s higher-end desktop CPUs with 4 cores (8 with SMT) and
uses the 22nm Intel Haswell microarchitecture [29]. This core also contains a 4-way instruc-
tion decoder, but utilizes 8 execution ports to launch operations from the reorder buffer
onto the functional units. Each core contains two integer, two floating-point and a memory
functional unit, all of which can execute SIMD instructions. The Haswell microarchitecture
supports SSE 4.2 as well as AVX2 (256-bit integer & floating-point operations). The pro-
cessor contains a 32 kB L1 cache per core; a 1 MB L2 and an 8 MB L3 cache are shared
between all cores. The processor also contains an integrated Intel HD 4600 GPU, which was
not evaluated. Finally, the processor is clocked at 3.4 GHz and can be boosted to 3.9 GHz
for compute-intensive applications.

Intel Xeon E5-2695

The Xeon E5-2695 brings the Haswell microarchitecture into the server setting. The mi-
croarchitecture of this processor is very similar to the Core i7 but the package contains 12

1The AMD moniker for fused multiply-and-add is fused multiply-and-accumulate (FMAC)

Robert F. Lyerly Chapter 2. Background 8

cores (24 with SMT) instead of 4. Additionally, the processor contains multi-socket and ECC
support for servers, but removes the integrated Intel HD 4600 GPU. Each core contains the
same 32 kB L1 cache, but the shared L2 and L3 caches have been expanded to 3 MB and
30 MB, respectively. Finally, the procesor is clocked at 2.4 GHz, and can be boosted to 3.2
GHz for compute-intensive applications.

2.1.2 Graphics Processing Units

The GPUs used to evaluate heterogeneous scheduling range from older-generation desktop-
and server-grade GPUs to newer GPUs that blur class distinctions by simultaneously tar-
getting gaming graphics and high-performance computation. GPUs are often advocated
as a counter-balance to CPUs in that they are throughput-oriented. They aim to get as
much independent parallel computation executing as possible; this design point is inspired
by their graphics background, which requires rendering every pixel on screen as quickly
as possible. The processor cores in these architectures contain wide SIMD (or SIMT for
NVidia) lanes, each of which corresponds to a single thread in the parallel computation2.
These cores execute multiple threads in lock-step and suffer severe performance penalties for
control-flow divergence between individual threads. Additionally, these architectures feature
programmer-managed caches (although recent models include CPU-like hardware caches)
and hide memory access latencies by using hardware to swap between groups of threads
(warps in NVidia terminology, or wavefronts in AMD terminology) that are not stalled on
memory accesses. These architectures contain lower clock frequencies than their CPU coun-
terparts, but sustain high instruction throughput through massive parallelism. The four
GPUs used in this work are the NVidia GeForce GTX 560 Ti, the NVidia Tesla C2075, the
NVidia GeForce GTX Titan and the AMD Radeon R9 290X.

NVidia GeForce GTX 560 Ti

The GeForce GTX 560 Ti (hereafter referred to as the GTX 560 Ti) is a desktop-grade
GPU that uses NVidia’s Fermi microarchitecture [45] at a 40 nm feature-size. The GTX
560 Ti is composed of 14 Fermi streaming multiprocessors (SM), each of which contains 32
CUDA cores for a total of 448 CUDA cores. Each CUDA core contains a 32-bit integer
and a 32-bit floating-point unit, the latter of which can execute fused multiply-and-add
instructions. Each SM additionally contains 16 load/store units and four special function
units (for transcendental operations). Warps, or groups of 32 threads, are fetched & decoded
with two warp schedulers. The instructions for all threads within the warp are then issued
using two corresponding warp dispatch units. Each SM has a 64 kB configurable L1/shared
memory cache, and all SMs are connected to 1.2 GB of global memory. The GPU is clocked

2GPU threads are a hardware entity, meaning they are much more lightweight than traditional operating
system threads

Robert F. Lyerly Chapter 2. Background 9

at 1.464 GHz.

NVidia Tesla C2075

The Tesla C2075 (hereafter referred to as the Tesla) is the server-grade equivalent of the
GTX 560 Ti aimed at HPC rather than gaming. This GPU also contains the Fermi mi-
croarchitecture with the same number of CUDA cores. However, because the Tesla is geared
towards HPC, it contains full double-precision floating point hardware support, whereas the
graphics-oriented GeForce cards use some form of double-precision emulation. This enables
the Tesla to have 4x the double-precision performance of the GTX 560 Ti. Other than the
enhanced double-precision compute performance, the differences between the two GPUs are
small – the Tesla has a slightly slower clock frequency of 1.15 GHz, but a wider memory bus
(384-bit vs. 320-bit) and a larger global memory (6 GB) with ECC support.

NVidia Geforce GTX Titan

The GeForce GTX Titan (hereafter referred to as the Titan) contains NVidia’s newest Kepler
GK110 microarchitecture which uses a 28 nm process technology [46]. Although the Titan
is gaming-oriented, it is also billed as suitable for HPC (although server-grade Tesla Kepler
GPUs exist). Besides adding programmability features, the Titan contains a redesigned
streaming multiprocessor (renamed SMX) architecture. Each of the 14 SMXs in the Titan
contain 192 CUDA cores, 64 separate double-precision units, 32 special function units and 32
load/store units for a total of 2,688 cores. The number of warp schedulers and warp dispatch
units was increased to 4 and 8, respectively (warps still consist of groups of 32 threads). The
Titan still contains 64 kB of configurable L1 cache/shared memory, but features an expanded
register file and 6 GB of global memory. Finally, the Titan is clocked at a lower 837 MHz,
but the increased number of cores enables significantly higher performance than the Fermi
architecture3.

AMD Radeon R9 290X

The Radeon R9 290X processor contains AMD’s newest Graphics Core Next compute archi-
tecture on a 28 nm process [5]. The Graphics Core Next Architecture changes the underlying
implementation of the compute units (CU) within the GPU. Instead of utilizing a set of 16
4-way VLIW-based SIMD lanes (which comprised a single 64 work-item wavefront), the CUs
consist of a set of 4 16-wide SIMD lanes, each of which can execute instructions from separate
wavefronts (similarly to NVidia’s terminology, AMD refers to each processing unit in each
SIMD lane as a stream processor) and fetch memory. This change allows limited out-of-order

3NVidia moved from separate base and graphics clocks in the Fermi architecture to a unified clock in the
Kepler architecture

Robert F. Lyerly Chapter 2. Background 10

execution on the GPU, as different lanes can be filled from a re-order buffer. In addition
to the SIMD lanes, each CU contains a scalar functional unit used to handle branching,
synchronization and an ALU for use in address generation. The GPU contains 44 CUs for a
total of 2816 stream processors. However, this GPU is tailored to graphics applications and
therefore has neutered double-precision floating-point performance. Each CU contains a 16
kB read/write cache and a 16 kB read-only cache; a 1 MB L2 cache is shared by all CUs,
and sits in front of 4 GB of global memory. The Radeon R9 290X is clocked at 1 GHz.

2.1.3 Manycore Coprocessors

These processors represent a future direction in CPU-like processor architectures. They at-
tempt to gain the performance of throughput-oriented architectures through simpler CPU-
like cores to leverage existing CPU programming models instead of the more complex
GPU/single-work-item programming models. Because they seek to be compatible with ex-
isting processors and programming models, these processors contain mechanisms that make
them OS-capable (e.g. interrupts and virtual memory). They feature cores that shed the
power-hungry requirements of out-of-order execution in favor of in-order superscalar or VLIW
execution. However, they do include branch prediction capabilities, a feature most modern
GPUs lack. These architectures are gaining traction in various markets – Facebook uses
Tilera’s processors for their datacenters [9] and there are several Top500 supercomputers
(including the fastest supercomputer in the world, the MilkyWay-2) that accelerate compu-
tation using the Xeon Phi coprocessors [3].

Tilera TILEncore-Gx36

The TILEncore-Gx36 coprocessor is a new custom architecture from Tilera fabricated on
a 40 nm process and targeted towards multimedia servers [56]. The architecture consists
of 36 3-way VLIW/in-order cores connected to a grid or mesh interconnect. Each core is
programmed using a custom RISC ISA designed by Tilera. Each operation in a VLIW
instruction word corresponds to one of three execution pipelines. The first pipeline is used
for arithmetic and logic operations, including multi-cycle instructions such as arithmetic
multiply. The second pipeline is also used for arithmetic and logic operations in addition to
control flow (branches & jumps). The final pipeline is used solely for memory accesses. None
of the pipelines support floating-point arithmetic, meaning it must be emulated in software.
Additionally, there is no specialized SIMD hardware, although the arithmetic and logic units
can perform SIMD instructions on 64-bit operands. Each processor is a part of an on-grid tile
that also contains a 32 kB L1 and a 256 kB L2 cache. Access to the 8 GB of global memory
(distributed between 4 memory channels) is serviced either through direct access if the tile
is directly connected to a memory controller (and is therefore responsible for servicing all
memory requests to that memory bank), or is routed through the grid to the appropriate
memory bank. The TILEncore-Gx36 runs a custom version of Red Hat Enterprise Linux

Robert F. Lyerly Chapter 2. Background 11

and is programmable using C/C++ through a custom GCC compiler. Standard Linux
parallel programming models (i.e. PThreads & OpenMP) are available, meaning existing
applications can be recompiled for the TILEncore-Gx36. The processors are clocked at 1.2
GHz; however, the entire PCIe board consumes at most 50W of power.

Intel Xeon Phi 3120A

The Xeon Phi architecture (codenamed “Knight’s Corner”) is a meet-in-the-middle de-
sign, allowing the programming flexibility of CPUs with the peak parallel performance of
GPUs [13][50]. The Xeon Phi 3120A contains 57 physical cores, each with 4-way SMT, for
a total of 228 logical cores manufactured with a 22 nm process. These cores operate using a
subset of the x86 ISA, with added vector extensions for the custom 16-wide vector processing
unit (VPU)4. Each core maintains 4 thread contexts, and issues from these contexts in an
in-order fashion to two execution pipelines in a round-robin fashion. The processor cores
cannot issue from the same context in consecutive cycles, meaning that there must be at
least two threads per core to achieve maximum throughput. The first pipeline can execute
instructions on the VPU, the scalar floating-point unit or the two scalar integer units, while
the second pipeline can only execute instructions on the two scalar integer units. Each core
contains a 32 kB L1 cache and a 512 kB slice of a distributed L2 cache. Each core/L2 cache
slice is attached to a ring interconnect which allows access to 6 GB of memory distributed
between 12 memory channels. As previously mentioned, the Xeon Phi runs its own stripped-
down version of Linux and supports of a variety of tradtional and emerging programming
models. The processor is clocked at 1.1 GHz.

2.2 Parallel Programming Models

The architectures mentioned in section 2.1 can be programmed using a variety of models.
We focused on two widespread and industry-accepted programming models in our scheduling
work.

Throughout this work, we denote a compute kernel as a section of parallel work to be
performed on some parallel processor5. A compute kernel may execute at varying levels of
granularity (e.g. data-level or task-level) and can be specified using a variety of programming
models, but in general the compute kernel contains several pieces of independent work that
are executed by some parallel processor, either concurrently (through context switching)
or in parallel (multiple execution units operating at the same time). In general, compute
kernels contain a large amount of arithmetic or logic computation and should benefit from
parallelism in processing resources (although in practice they may not).

4The VPU is 16-wide for 32-bit arithmetic
5A compute kernel has no connection to an operating system kernel

Robert F. Lyerly Chapter 2. Background 12

Additionally, coprocessor and device are used interchangeably throughout. Although there
are slight semantic differences (coprocessor implies non-host CPUs, while device refers to any
compute resource), we generally use coprocessor and device to mean a processor resource on
which to execute a compute kernel.

2.2.1 OpenMP

OpenMP, [10] which stands for Open Multi-Processing, is an API used to parallelize com-
pute kernels on CPUs in a task/thread-based, shared-memory programming model. The
OpenMP standard specifies a set of source-code pragmas, library functions and environment
variables that allow developers to leverage underlying threading implementations (such as
PThreads [33]) without the implementation-specific threading setup/cleanup code. Program-
mers annotate source code with OpenMP parallel pragmas to setup a team of threads, each
of which executes the source code in the parallel region. Work-splitting among threads is
specified by further annotation of for-loops and task-specific sections. The main OpenMP
work-splitting construct used by the benchmarks in this work is the for construct, which
splits the iterations of a given for-loop among the threads in a team using various strategies
(the default of which is to give every consecutive iteration to consecutive threads). Developers
can specify how data is shared between threads by appending shared or thread-private data
clauses to the for pragma. The standard also includes support for various multithreading-
specific constructs, such as critical/atomic regions, locks and barriers. The OpenMP runtime
is configured through a set of library calls and environment variables to specify various pa-
rameters, such as the number of threads in a team. Since OpenMP is a standard and not an
implementation, it includes no support for code refactoring to enable threading. However,
many commercial and open-source compilers contain OpenMP support [28][26][15].

As of OpenMP 4.0, the standard includes support for offloading compute kernels to alter-
native devices using the OpenMP target pragmas. This breaks the shared-memory model
of previous OpenMP standards, and requires the user to annotate offload pragmas with
data movement clauses. Despite the standard being released in July 2013, there is no avail-
able implementation that supports the new target pragmas. However, several research-level
source-to-source translators convert OpenMP to device-specific programming models. Open-
MPC [40][39], developed by Lee et al. using the Cetus compiler infrastructure [38], is a tool
that translates for-loops annotated with omp for pragmas into the CUDA parallel program-
ming model [47], suitable for execution on NVidia GPUs. OpenMPC additionally applies
some GPU-specific optimizations and has support for tuning of the generated applications.

2.2.2 OpenCL

OpenCL is a parallel programming standard for heterogeneous compute devices [24]. An
OpenCL application consists of two interlocking pieces – a host and device. The host (usually

Robert F. Lyerly Chapter 2. Background 13

a single CPU in the system) performs all setup, coordinates data transfer between the host
& device, launches compute kernels, and performs all cleanup. The device is the parallel
processing component and is solely responsible for executing compute kernels. The standard,
which is strongly influenced by NVidia’s CUDA programming model, specifies a functionally
portable set of host-side APIs and a device-side C-like programming language for developing
compute kernels. Compute kernels are executed by a global set of threads divided into a
hierarchy of work-groups and work items. There are usually a limited number of fine-grained
work items per work group (usually 64-256 work items), but a potentially large number of
work groups. Compute kernels are specified in a single work item description, and are
compiled at runtime into full compute kernel descriptions suitable for execution on a specific
device. During execution, multiple work items are usually executed in parallel in a SIMD or
SIMT fashion. Vendors who support OpenCL [30][16][47] provide a compiler and runtime
that plugs into the OpenCL Installable Client Driver, which directs the generic OpenCL API
to the user-specified implementation.

Chapter 3

Related Work

Research related to this work falls into several categories. The first section pertains to
quantifying architectural characteristics of widely varying processor architectures (such as
the functional units in processors, number of cores, memory subsystem, etc.). The next
section discusses some of the recent successes in using machine learning to aid in the com-
pilation process. Next, there have been many approaches to scheduling of compute kernels
across heterogeneous systems that stretch in scope from simple compiler-level analysis tools
to cluster-wide frameworks. The final section contains a body of work that addresses co-
scheduling the parallel work of a single compute kernel across multiple architectures in a
system. This body of work is not directly related the problems we address in that they
assume complete access to all devices in a system, whereas we seek to cooperatively schedule
multiple kernels in the same system. However, these works show the focus of the majority
of heterogeneous scheduling research.

3.1 Architecture Characterization

Several previous works characterized processors based on various performance metrics. Thoman
et al. developed a suite of microbenchmarks, named uCLbench, that stress various parts of
OpenCL devices [55]. These benchmarks stress the various subsystems and runtime compo-
nents of OpenCL devices, including the devices’ basic and transcendental arithmetic through-
put, their memory bandwidth & latency, their ability to handle control flow divergence and
OpenCL runtime overheads1. The authors evaluate several CPU, CPU-like and GPU archi-
tectures using the benchmark suite; they additionally use the results to guide manual kernel
optimization (for vectorization, branching elimination and caching optimizations) for a Ja-

1Our set of features extracted from OpenMP (section 4.2.2) and OpenCL (section 5.2.2) applications was
strongly influenced by this work. uCLbench was also used to generate hardware features for OpenCL devices
(section 5.2.3).

14

Robert F. Lyerly Chapter 3. Related Work 15

cobi kernel on each device, showing an overall 192% improvement over a standard OpenCL
compiler.

Zhang et al. study the poor performance portability of OpenCL compute kernels across
diverse architectures and how performance portability can be improved by a set of “tun-
ing knobs” and OpenCL language extensions [58]. The problems they discuss with poor
performance portability arise strongly from the differences in the memory subsystems of
GPUs and CPUs (and the inability of the respective compilers to adapt the compute ker-
nels appropriately)2. Most of the performance adjustments they suggest involve refactoring
the memory access patterns of individual kernels to map more efficiently onto the memory
subsystem of a specific architecture. The proposed language extensions specify ways to ex-
press parallelism differently from the work-group/work-item language features in OpenCL
and several new memory abstractions, including switching between programmer-managed
and hardware-managed caches and row/column-major layouts.

3.2 Machine Learning & Compilers

In recent years, machine learning has been studied and used extensively in compiler research
for problems such as selecting optimizations and generating heuristics to guide various op-
timizations. One of the most recent successes is Milepost GCC, a compiler tool that uses
machine learning to select the most effective set of compiler optimization flags for indi-
vidual applications [19]. The authors propose machine learning as a compromise between
using standard GCC optimization levels (which significantly improve execution speed but
are sub-optimal) and iterative compilation (which exhaustively explores the search space
of optimization flags by iteratively combining and improving performance). With over 100
optimization flags available, exhaustively searching (or even using iterative compilation) re-
quires an intractible amount of execution and recompilation; hence, machine-learning is used
in Milepost GCC to prune the search space. This framework, now integrated into mainline
GCC, extracts features and specializes optimization heuristics per function in order to im-
prove all facets of the compilation process (compilation time, code size & execution time).
The framework collects 56 code features pertaining to all aspects of code execution, from
simple counts of operations to abstract features such as control-flow graph structure. Us-
ing several types of machine learning models, the authors are able to demonstrate a 11%
speedup over the default optimization heuristics in GCC in a suite of benchmarks, and us-
ing the production-level Berkeley DB library, are able to demonstrate a 17% speedup in
execution time, 7% reduction in code size and a 12% speedup in compilation time.

The ability of the machine learning model to make accurate predictions hinges on the col-
lection of a set of representative application features. While humans have an intuitive idea
of what features should be selected to describe applications, oftentimes strange and esoteric

2This work stressed the importance of adding memory access pattern features to the feature sets

Robert F. Lyerly Chapter 3. Related Work 16

features may give the machine learning model more appropriate information. Leather et
al. presented an approach to automatically generate the set of program feature needed to
train and evaluate machine learning models to select the unroll factor for loop unrolling [37].
The authors describe the set of all possible program features in a feature grammar, which is
similar to (and automatically derived from) an application’s low-level IR. Features are then
automatically generated from the feature grammar using a genetic programming algorithm.
Although the up-front cost is significant (the authors mention that it took several days to
generate the set of features), the approach yielded models for loop unrolling that achieved
79% of the total performance achieved by an oracle. GCC’s heuristic achieved just 3% of
the oracle’s performance.

3.3 Heterogeneous Scheduling

A significant amount of work aims to efficiently scheduling compute kernels across com-
pute devices in system or even in a cluster. The Merge framework, developed by Linder-
man et al., is a programming model, compiler and runtime for heterogeneous multi-core
systems [42]. The framework utilizes a library-based programming model, whereby users
embed architecture-specific compute kernels (denoted as sequencers) into regular C source
code. During compilation, these architecture-specific kernels are integrated into the applica-
tion so that the runtime scheduler can select the appropriate architecture during execution.
Additionally, the Merge framework API can be used to generate device-specific implementa-
tions of a generic kernel. At runtime, the various kernel implementations are mapped to the
available hardware, and the results are combined using the traditional map/reduce pattern.
Using the framework, the authors are able to achieve up to a 8.5x speedup using an Intel
X3000 media accelerator, and a 22x speedup using SMP Intel Xeon processors.

Jiménez et al. developed a scheduling framework for running compute kernels across de-
vices in CPU/GPU systems using a round-robin distribution policy that adapts to perfor-
mance history of compute kernels on individual devices [32]. The scheduler, which performs
scheduling at the function level, schedules architecture-specific (and developer-provided) im-
plementations of compute kernels using a task queue. Compute kernels are scheduled onto
devices as the devices become available. Additionally, the runtime records execution history
of each compute kernel on each device; if there is a significant performance difference be-
tween several architectures, the kernel is no longer scheduled onto the slower device. Using
this architecture, the authors are able to achieve consistent speedups of 30% over using the
GPU exclusively.

StarPU, presented by Augonnet et al., is another framework for scheduling tasks onto the
compute resources in a system [7]. The framework includes a memory management li-
brary that uses software caching to minimize the number of data transfers between sepa-
rate memory spaces in the system. Although the programmer is responsible for providing
device-specific implementations of the compute kernel, the framework includes a queue-based

Robert F. Lyerly Chapter 3. Related Work 17

scheduler with task priorities that distributes compute kernels to the devices in the system.
Several policies, including “greedy” (where processors grab tasks from the queue as soon as
possible) and hint-based (where the programmer specifies the affinity of a compute kernel
to an architecture using weights) policies are evaluated. The authors demonstrate with the
StarPU framework strong speedups, with performance approaching that of a hand-optimized
library.

Kim et al. developed the SnuCL framework, a framework that retrofits the OpenCL API into
a distributed setting [34]. SnuCL utilizes the data transfer and kernel execution semantics
of OpenCL in order to launch compute kernels across the compute devices in a system. All
CPU cores and each individual GPU in a node over all the nodes in the system represent the
collective set of compute devices available in the cluster. The SnuCL framework includes a
set of compiler tools to convert OpenCL to CUDA (for NVidia GPUs) and OpenCL to C (for
CPUs) while optimizing for each individual architecture. Additionally, using a distributed
runtime (with control threads on each node to supervise data transfer and kernel execution),
kernel executions are load balanced across the compute devices in the cluster by distributing
work-groups among the devices using a static (every compute device executes the same
number of work-groups) and dynamic (devices request new work groups from the host after
finishin execution of another work group). They explore the scalability of benchmarks from
several suites, demonstrating how clusters can be used to speed up compute kernels.

Several other works use machine learning to make scheduling decisions. Emani et al. de-
veloped a technique to automatically adjust the number of OpenMP threads used by the
underlying OpenMP implementation in the presence of external workload [17]. The authors
argue that oversubscribing threads to CPUs increases scheduler conflict and limits speedups.
Instead, the authors perform spatial scheduling (instead of temporal scheduling) to elimi-
nate scheduling conflicts and reduce context-swapping. The authors collect a small set of
compute kernel statistics and architecture/system information and train an artificial neural
network to adjust the number of threads used by an application at various OpenMP parallel
sections. Using this trained model, the authors demonstrate a 50% speedup over adjusting
the number of OpenMP threads using a hill-climbing approach.

Grewe et al. present a framework that utilizes machine learning to automatically select
the most efficient architecture for a compute kernel [22]. Their framework accepts as input
an application parallelized with OpenMP pragmas and generates an application that can
launch the compute kernel on the host CPUs (using OpenMP) or a GPU (using OpenCL)3.
Compute kernels is statically mapped to an architecture using a decision tree trained from
a set of applications. The training data used to construct the decision tree is based on a
set of combined kernel features extracted from each compute kernel in every application.
A source-to-source translator converts the OpenMP compute kernel to OpenCL and ap-
plies GPU-specific optimizations (including access & loop reordering and prefetching). At
runtime, the application calls into a machine-learning library to use the trained decision

3This work strongly influenced the work presented in chapter 4.

Robert F. Lyerly Chapter 3. Related Work 18

tree to select an architecture on which the compute kernel executes. They show that for
the NAS Parallel Benchmark suite [8] their framework is able to predict the best architec-
ture for every application. Additionally, they show the performance improvement of their
OpenMP-to-OpenCL translation over OpenMPC [39] and SnuCL [34].

3.4 Co-Scheduling

There has been much work in co-scheduling of compute kernels across multiple devices in a
system, i.e. dividing the work to be done in a compute kernel across several architectures.
Qilin, developed by Luk et al., consists of a programming API and a runtime to adaptively
schedule compute kernels in various ratios onto a CPU/GPU heterogeneous system [43]. The
API consists of a set of primitives used to divide and map varying chunks of work to the
two devices. The work ratio between the two devices is determined and adapted at runtime
based on previous runs of the compute kernel, stored in a database. The runtime determines
the optimal work ratio by minimizing the expected execution time of the two devices given
varying work ratios. Utilizing past history for performance prediction, the authors are able
to show a 69% speedup over a CPU-only mapping, and a 32% speedup over a GPU-only
mapping.

Scogland et al. presented several co-scheduling approaches for use with higher-level heteroge-
neous parallel programming models, collectively referred to as “Accelerated OpenMP”4 [52].
Within this framework, the authors describe a set of compiler refactoring techniques to en-
able compute kernel execution across a CPU and GPU. Additionally the authors present
several runtime schedulers to adaptively adjust the ratio of workload between the devices.
The set of schedulers include a static scheduler (which calculates a ratio based on device core
counts), a dynamic scheduler (which adjusts the static scheduler in subsequent executions
of the same kernel), and several scheduler that adjust the ratio at a finer granularity by
splitting a single compute kernel invocation into smaller pieces. Using these various policies,
the authors are able to achieve speedups ranging from 1.5x-8x on four benchmarks.

Other research trains machine learning models to decide the workload split among devices.
Kofler et al. present a framework for splitting the workload based on compute kernel features
and input size [35]. The framework is comprised of a compile-time source-to-source translator
(to allow multi-device kernel execution), a compile-time feature extractor, a run-time feature
extractor and a run-time co-scheduler that enables model training and evaluation. This
framework performs scheduling for multi-CPU/multi-GPU systems by using artificial neural
networks (ANN) and support vector machines (SVM). Their approach uses a technique called
greedy feature selection to select the most effective compute kernel and runtime features from
a pool of available features, i.e. the features that serve as the best predictors of performance.
The authors demonstrate, using two simple benchmarks, that different work ratios provide

4Accelerated OpenMP includes OpenACC [48] and OpenMP 4.0

Robert F. Lyerly Chapter 3. Related Work 19

better performance for different applications.

Finally, Grewe et al. present an offline and machine-learning based technique for dividing a
compute kernel among devices in a CPU/GPU system [20]. Their technique involves a two-
level prediction model. The first level predicts if the compute kernel should be executed solely
on the CPU or solely on the GPU using a binary classifier SVM. The second level again uses
an SVM, but to predict the optimal work ratio between the CPU and GPU. This approach
follows the same template as other machine-learning based approaches – the authors extract
compute kernel features (and use principal component analysis, PCA, to reduce the features
set’s dimensionality) and train the models using 47 separate applications. The models are
then evaluated for their prediction accuracy. By co-scheduling onto the available resources,
the authors are able to achieve a 57% speedup over a dynamic approach that breaks the
kernel execution into smaller chunks and distributes them on an as-needed basis.

Grewe expanded this work to co-scheduling onto CPUs with integrated GPUs with external
workload [21]. In this work, the authors again use machine learning to predict the optimal
workload division for the CPU and integrated GPU. However, in this work they also include
contention features that include the delay in launching a kernel on the GPU (only one
compute kernel can be running on the integrated GPU at a time, other kernels are queued
up for execution). By taking into account external workload on the GPU, the authors are
able to demonstrate speedups of of 54% and 256% over competitors.

Chapter 4

Refactoring & Scheduling OpenMP
Applications

The first part of this work addressed refactoring and scheduling of OpenMP applications
across the available processing resources in a system. OpenMP [10] is a traditional multicore/shared-
memory parallelism model that targets thread-based parallelism in CPUs1. Therefore, these
OpenMP applications required significant automatic refactoring in order to run on various
architectures, including extensive memory management to adapt OpenMP’s shared-memory
model to handle device-specific memory spaces and conversion from OpenMP to device-
specific programming models. These applications were refactored and subsequently analyzed
to characterize how parallel compute kernels2 executed. Using a GCC plugin (referred to
as the feature extractor), compute kernel features were extracted from compute kernels at
compile time as a basis for analysis and subsequent scheduling decisions. These features
include operations performed on data, memory accesses and control flow. The extracted
features from this set of applications were used to build a machine learning model to make
scheduling decisions, from the machine learning implementation in OpenCV [57]. At run-
time, scheduling decisions were made by a central scheduling daemon (the scheduler) that
combined program features and system load (or external workload) in order make scheduling
decisions. Applications sent the scheduler the extracted features via inter-process communi-
cation (IPC), which subsequently returned a scheduling decision to the application.

We assumed a master-slave model for our execution model, hereafter referred to as the “co-
processor execution model”. Figure 4.1 shows how control flows in a refactored application.
The left side of the figure, labeled “Host”, represents non-compute kernel application process-
ing on a single host CPU, while “Device” represents compute kernel execution on a compute

1The newest iteration of the standard includes annotations for executing on heterogeneous architectures,
but no stable implementation is available

2Parallel work sections in OpenMP are denoted by “#pragma omp parallel” pragmas in the source code.
In this chapter, we use parallel work sections denoted by this pragma and compute kernel interchangeably

20

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 21

Figure 4.1: Coprocessor Execution Model

device (which could be the host CPUs, depending on the scheduler’s decisions). Solid lines
indicate that a processor is executing application code while dashed lines indicate that the
processor is in a waiting state. The figure shows the flow of control between host and device
when launching a compute kernel. In this model, coprocessors act as slaves – they are initial-
ized when the application begins execution, but wait for commands from the host (master).
Depending on scheduling decisions, some devices may not be used at all by the application
(although other applications can still use the coprocessors). Application execution proceeds
as follows – the host initializes all devices and begins executing the application as normal
until it reaches the beginning of a compute kernel, called a partition boundary. The host
requests a scheduling decision from the scheduler, and based on that decision, executes a
device-specific partition which handles data transfer & execution on a particular coprocessor.
This device-specific partition performs several steps:

• Notifies the device that execution is about to begin (not necessary for all devices)

• Transfers all input data to the coprocessor

• Launches the specified kernel on the coprocessor

• Waits for kernel execution to finish, then transfers all output data back to the host

All device partitions follow these steps, albeit in a device-specific order and using device-
specific APIs. Once the host has transferred all data back from the device, it continues
normal execution of the application while the coprocessor re-enters the waiting state. This
continues until either another partition boundary is reached (in which the previous process
repeats) or the application finishes execution; when it finishes, all devices are released. This
model is similar to how kernels are executed on modern GPUs, with additional steps for
runtime scheduling and cleanup of compute kernels.

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 22

The rest of the chapter discusses refactoring & scheduling of OpenMP applications and is
structured as follows:

• Section 4.1 presents the design of heterogeneous OpenMP execution & scheduling

• Section 4.2 describes how OpenMP applications were refactored for heterogeneous ex-
ecution & runtime scheduling, how features were extracted from the compute kernels,
how applications were scheduled via the scheduler, and how machine learning models
were used to make the scheduling decisions

• Section 4.3 evaluates the results of the refactoring & scheduling process

4.1 Design

This work stemmed from the desire to automatically refactor legacy code parallelized with
OpenMP to be able to execute on heterogeneous-ISA devices. Once an application was
refactored, it could be analyzed in order to be dynamically scheduled onto those devices for
the best performance, taking into account compute kernel features and external workload.
We chose to target three heterogeneous-ISA devices – an AMD Opteron 6376 16-core CPU,
an NVidia Tesla C2075 GPU and a Tilera TILEncore-Gx36 coprocessor. There were several
reasons why OpenMP was chosen:

1. OpenMP is a widely supported and has many mature implementations, including the
free & open-source GNU OpenMP [15] implementation (GOMP). As such, OpenMP
is a proven industry standard which continues to evolve in response to the changing
processor landscape.

2. OpenMP is supported on two out of the three listed devices – the Opteron 6376 CPU,
and the TILEncore-Gx36 coprocessor.

3. OpenCL [24] is an obvious alternative parallel programming model targeting hetero-
geneity. However, while OpenCL is widely supported by large vendors, smaller ven-
dors may not provide an implementation for their architectures. In particular, our
decision to target OpenMP applications arose from the lack of OpenCL support for
the TILEncore-Gx36 coprocessor; using OpenCL would require implementing an entire
OpenCL runtime, a daunting task.

Therefore, we selected OpenMP as our parallel programming model of choice. The main issue
with using OpenMP is that there is no implementation available that allows heterogeneous
execution; that is, there is no implementation that allows launching compute kernels on
separate devices from the host. As mentioned above, OpenMP 4.0 [10] provides an API for

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 23

executing compute kernels heterogeneously using OpenMP target pragmas, but even though
this new standard has been available since since July 2013 there is no stable implementation
available3 (the Portland Group’s commercial PGI compiler [25] supports an OpenMP 4.0-
like model named OpenACC). Additionally, the standard requires programmers to utilize
additional data movement pragmas to specify what data must be sent to and from the
compute device to support the kernel. We wanted a solution that transparently handled
data movement so that developers could ignore tedious and error-prone data movement code
and instead focus on application logic. We decided to develop our own tool to satisfy these
requirements.

While OpenMP is implemented by GCC on x86-64 and the TILEncore-Gx36 coprocessor,
there is no OpenMP implementation for GPU architectures, which instead rely on single
work-item compute kernel descriptions such as OpenCL and CUDA. Lee et al. produced
a research tool called OpenMPC [40] [39], built on the Cetus compilation framework [38],
that converts OpenMP parallel sections into CUDA source code, suitable for compilation
and execution on NVidia GPUs. Rather than attempting to implement our own OpenMP-
to-CUDA or OpenMP-to-OpenCL source-to-source translator, we chose to utilize this tool
to convert the compute kernels of our benchmark applications into CUDA.

Despite the availability of OpenMPC, applications still required significant refactoring to
transparently handle execution and runtime scheduling onto the various coprocessors. We
implemented a tool in order handle this application refactoring, which achieved several design
goals:

1. Create device-specific partitions that handle execution of compute kernels for a partic-
ular device, including any necessary data transfers and kernel launches using device-
specific APIs.

2. Track memory allocation & deallocation on the host-side so that data could be kept
coherent on both the host & device, i.e. data transfers between host & device could
be handled transparently by the compiler and a runtime memory management library.

3. Perform runtime scheduling of compute kernels across heterogeneous architectures by
communicating with a centralized scheduler via a client-side scheduling library.

Once applications were refactored to enable runtime scheduling, we needed a mechanism
to make the scheduling decisions themselves. Machine learning was chosen because of its
recent successes in providing good decision making ability (especially in the related work
discussed in chapter 3). In order to use machine learning, several additional design goals
were established:

3Near the end of this work, Liao et al. published an initial OpenMP 4.0 implementation targeting NVidia
GPUs & CUDA [41]

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 24

1. Compute kernels needed to be characterized. This was accomplished using a feature ex-
tractor tool, which quantified the types of operations being performed by the compute
kernel. The feature extractor was implemented as a GCC plugin.

2. A machine learning model needed to be constructed from the extracted features. This
was done using the machine learning implementation provided by OpenCV [57], an
open-source computer vision library that provides generic machine learning algorithms.

There were several reasons why we chose to implement the feature extractor as a GCC
plugin. First, GCC has a built-in, mature OpenMP implementation (while other common
free and open source compilers, such as Clang/LLVM, do not). Although applications were
being refactored to various parallel models for execution, features were extracted from the
original source of the compute kernels which were written using OpenMP. In this way, the
feature extractor could easily leverage GCC’s OpenMP support to characterize kernels.

Another reason that GCC was chosen emerged from the problem of accurately characterizing
compute kernels. We chose to incorporate profiling to obtain exact statement execution
counts from the compute kernels (although others, such as [22], do not). GCC provides more
functionality in this regard as well – it includes support for edge profiling of applications.
This means that GCC can instrument the control flow graph of the functions in an application
with counters so that a profiling run of the application records the exact number of times a
basic block is executed. While GCC uses this capability to inform optimization heuristics, we
leveraged this in order to accurately count the number of times a given statement is executed,
and scale the features extracted from that statement accordingly. Note that using profiling is
in general not portable as the features extracted correspond to a specific instantiation of the
compute kernel; subsequent kernel executions could have vastly different features, depending
on control flow, input data, etc. For our purposes, however, this profiling-based approach
was sufficient as every run of a given benchmark used the same input and therefore resulted
in the exact same features4.

Finally, we needed a way to make scheduling decisions at runtime for applications. If ap-
plications were to be scheduled without considering external load, then no central scheduler
was required and applications could simply evaluate the ML models individually. However,
we wanted to incorporate external workload information into the scheduling decision. Be-
cause of this, we needed a central repository for external workload information, as there was
no clean & easy way of querying workload on either the Tesla C2075 or the TILEncore-
Gx36. Therefore, we needed a central scheduler to make scheduling decisions – applications
would send the scheduler the set of features extracted by the feature extractor, and the
scheduler (combining those features and external workload data) would make a scheduling
decision. There were several design decisions that needed to be made in order to implement
the scheduler:

4The second iteration of the feature extractor for OpenCL kernels (discussed in section 5.2.2) relaxed this
constraint by using estimates to scale feature counts

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 25

1. How applications communicated with the scheduler

2. How the scheduler maintained external workload information

We considered two possible implementations for the scheduler: either as a kernel module
(accessed via system calls), or as a scheduling daemon. We chose to implement it as a
daemon, mainly for ease of use. Implementing the scheduler as a daemon eliminated a large
class of errors that arise from kernel programming. In general, it was easier to iteratively
develop the scheduler – it did not require continual unloading & reloading of a module for
minute changes and there was better debugging visibility. Additionally, there was automatic
synchronization by construction in the daemon. The scheduler was developed as a client-
server architecture; applications called a client-side library which used IPC to communicate
with the server. Using IPC allowed the scheduler to leverage a well-tested kernel capability
and mandated a first-in-first-out ordering. While a scheduling daemon potentially incurred
more overhead (several context switches between the application & scheduler, and between
user-space/kernel-space), the ease of use afforded by a daemon meant more time evaluating
the scheduling decisions and less time debugging. Section 4.3 discusses the overheads of this
approach.

Additionally, we needed a way to maintain external workload state of the system, since it
was not readily available for the coprocessors. We chose the simple approach of maintaining
run-queues for each device in the system. Applications checked-in with the scheduler to
request a scheduling decision and after execution of a compute kernel finished. In this way,
the server maintains up-to-date information regarding the number of applications running
on a given architecture. We could have potentially maintained the features of applications
running on various architectures, because intuitively applications co-located on a given device
could affect each other in many ways. However this would require extensive bookkeeping; we
instead chose to keep the scheduler as lean as possible, spending time on scheduling decisions
rather than updating internal state.

Finally, we needed a machine-learning algorithm to construct and evaluate the generated
models. Because we used OpenCV as the core machine-learning driver, we could switch
between implementations fairly easily. We tested both Artificial Neural Networks (ANN)
and Support Vector Machines (SVM) and empirically determined that ANNs were a better
match.

4.2 Implementation

There were several tools that needed to be developed to enable refactoring & scheduling:

1. A partitioner to refactor OpenMP applications for heterogeneous execution (4.2.1)

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 26

2. A feature extractor to characterize compute kernels (4.2.2)

3. A scheduling daemon that communicated with applications and made scheduling de-
cisions using previously generated machine learning models (4.2.3 & 4.2.4)

4.2.1 Refactoring Applications: The Partitioner Tool

A partitioning tool (hereafter referred to as the partitioner) based on the ROSE source-to-
source compilation framework [36] was developed to achieve the refactoring design goals.
ROSE is a free source-to-source compilation & transformation framework developed by
Lawrence Livermore National Laboratory to aid in compiler research by exposing the com-
piler internals for manipulation by translator passes; the partitioner is designed as a set
of these translator passes. The partitioner consumes as input a set of C source files with
OpenMP pragmas denoting the compute kernels and produces a set of C source files refac-
tored from the original source such that they:

• Track all memory management

• Contain partition boundaries and partitions for launching compute kernels on devices
in the system

• Contain device-specific code to be compiled for each device

• Interact with the scheduler to allow runtime scheduling onto the various architectures

The tool is structured as a series of passes, generally categorized into analysis and refactoring
phases:

1. Analysis – determines if the kernel is legally able to be executed on specific device,
and if so, what declarations and data are needed for execution.

2. Refactoring – generates the device-specific partitions, inserts calls to track memory in
the application and inserts scheduling calls.

In general these passes operate on functions in an application’s call graph using a post-order
traversal (with special handling for loops). At the top level, a function containing an #pragma

omp parallel pragma is designated as a compute kernel. The analysis phase investigates
the compute kernel (and all functions called from within the compute kernel), collecting
information. The refactoring phase changes the compute kernel as described above, and
rewrites other parts of the application where necessary. Information is stored between passes

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 27

in a popcorn5 pragma - individual passes write specific clauses to this pragma. Because the
partitioner is built as a source-to-source compiler, it works at the application source-code
level and requires that the application be re-compiled after refactoring.

The following sections describe the two analysis and three refactoring passes within the
partitioner.

Analysis – Find Compatible Architectures

This pass determines on which coprocessors a compute kernel can legally execute. Table 4.1
shows which characteristics are legally allowed on each architecture. Intuitively, the host is
able to run all compute kernels, as the compute kernels were originally written to execute
on this architecture. Because the TILEncore-Gx36 runs an operating system (and therefore
has a wider capability than most GPUs), it is able to accommodate more types of compute
kernels than most GPUs. However, there are many problems that arise from the complexity
of refactoring OpenMP applications; in general, this pass attempts to preclude problematic
kernels from refactoring.

Undefined Func-
tions

Higher-Order
Pointers

Dynamic
Memory

Undefined/
Complex Classes

Host (x86 64) Yes Yes Yes Yes
GPU No No No No

TILEncore-Gx36 No No Yes No

Table 4.1: Compute kernel characteristics allowed on various architectures

In general, undefined functions (such as those contained in shared libraries) are not allowed
on coprocessors because the partitioner must be able to include source code for any called
function in a device’s partition for re-compilation; this is an artifact of source-to-source
refactoring. Notable exceptions to this rule are library math functions (with implementations
available on NVidia GPUs and the TILEncore-Gx36) and standard library functions on the
TILEncore-Gx36. Dynamic memory management (while generally not performed inside of
compute kernels) is not allowed on GPUs but is allowed on the TILEncore-Gx36. Similarly
to undefined functions, any undefined classes6 (i.e. opaque class definitions) are not allowed
on coprocessors because their definitions are not available for recompilation (the compiler
cannot generate a memory layout for the structure or class).

5This work was originally part of the System Software Research Group’s Popcorn Linux project [23]. The
popcorn pragmas are an artifact from this initial goal, although we have since deviated from integration into
Popcorn Linux.

6The partitioner tool accepts C source, not C++, as input; therefore there is no class language construct
for these applications. However, ROSE is a C/C++ compiler; because of this it lumps structures and classes
into the same representation in the AST. We will use the ROSE terminology throughout.

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 28

struct Mat {
int ∗∗ data ;
int x , y ;

} ;

(a) Class containing lower-order pointers

struct Mat3 {
int ∗∗∗ data ;
int x , y , z ;

} ;

(b) Class containing higher-order pointers

Figure 4.2: Valid & invalid classes for the partitioner

Complex classes are also not supported on coprocessors, due to implementation limitations
rather than any fundamental issue. Because the partitioner must transfer data to and from
devices, it must be able to describe individual class objects to enable serialization. If all
fields of a class are contiguous in memory, i.e. the class does not contain any pointers, then
the partitioner can generate the necessary information to transfer the object between the
host and coprocessor – for the GPU, it can simply hand the compiler the class’ definition,
and for the TILEncore-Gx36 it can generate a custom MPI datatype for use at runtime
in MPI library functions. However, if the structure contains pointers, then its individual
fields must be sent separately owing to the fact that the location and size must be resolved
at runtime. Because so many compute kernels use structures with pointers, support was
added such that pointers-to-pointers could be serialized (shown in listing 4.2a). However,
if the structure contains pointers of order greater than three (shown in listing 4.2b), the
compute kernel cannot be executed on the coprocessor. While this could be implemented,
the benchmarks we used did not have higher-order pointers. Additionally, it could be argued
that the runtime cost of serializing arbitrary levels of referencing could potentially outweigh
any benefit obtained from executing on the coprocessor, as there would have to be several
calls to the memory management library to serialize the structure and regenerate it on
the coprocessor. Similarly, structures within structures are not currently supported in the
partitioner.

#pragma popcorn compatibleArch(< a r c h i t e c t u r e s >)
void matMul(int dim , f loat ∗C, const f loat ∗A, const f loat ∗B) {

. . .
}

Figure 4.3: Pragmas generated by the “Find Compatible Architectures” pass

The results of this pass are stored in a pragma as shown in listing 4.3, and can contain the
values x86, gpu and mpi, corresponding to the host, the Tesla C2075 and TILEncore-Gx36,
respectively.

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 29

Analysis – Kernel Interface

This pass is responsible for gathering all information required for execution of a compute
kernel on a coprocessor. In general, this pass must gather all declarations and definitions
that are required for the kernel to be compiled for a specific device, and it must determine
all inputs and outputs of the kernel. It gathers the following particular pieces of information
from the compute kernel:

• Inputs – all the inputs for the compute kernel. This includes all formal arguments to
the function containing the kernel.

• Global Inputs – all global variables that are read within the compute kernel.

• Outputs – all outputs from the kernel. This includes writes to any formal arguments
that are pass-by-reference (i.e. any side-effects) and return values.

• Global Outputs – any writes to global variables. These changes must be visible in the
host’s memory space.

• Functions – any functions called within the compute kernel. Note that the definitions
of these functions must be available for analysis and recompilation.

• Classes – class definitions of any objects used within the compute kernel.

The partitioner assumes that any variables passed as actual arguments to a function called
within the compute kernel are being written within that sub-function (the partitioner does
not do interprocedural analysis). This means that a variable passed by reference as a formal
argument to the compute kernel which is subsequently passed to another function from
within the compute kernel is considered to have side-effects and assumed to be an output.
Also, note that any inputs, outputs and definitions needed by a function called from within
the compute kernel are by necessity needed by the compute kernel itself. In other words, the
kernel interface is dictated by the needs of the compute kernel and any functions called by
the compute kernel.

The results of this pass are stored in pragmas, as shown in listing 4.4 (note: it does not
show output from the first pass). Possible values include the symbol names of the variables,
functions and classes discovered by the pass.

Refactoring – Partition Kernels

This pass is responsible for the bulk of the work in refactoring the code for runtime scheduling.
It starts by loading an empty template for the device side of each architecture’s partition,
which will eventually be populated with compute kernels and accompanying class/function

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 30

#pragma popcorn inputs (<va r i ab l e s >)
#pragma popcorn g l oba l Input s (<va r i ab l e s >)
#pragma popcorn outputs(<va r i ab l e s >)
#pragma popcorn globalOutputs(<va r i ab l e s >)
#pragma popcorn funct ionsNeeded(< f unc t i ons >)
#pragma popcorn c las se sNeeded(< c l a s s e s >)
void matMul(int dim , f loat ∗C, const f loat ∗A, const f loat ∗B) {

. . .
}

Figure 4.4: Pragmas generated by the “Kernel Interface” pass

definitions. While the GPU template is largely empty, the TILEncore-Gx36 partition requires
some startup code for initialization. We chose OpenMPI [49] as our means of architecture-
specific communication for the TILEncore-Gx36 because the coprocessor came with software
to create a network bridge-over-PCIe between the host and device making MPI an attractive
means for data transfer. Additionally, OpenMPI enables heterogeneous message passing,
solving a myriad of ABI issues that arise when transferring data between ISA-heterogeneous
architectures (such as x86 and the Tilera ISA). Thus we could leverage the stable and mature
OpenMPI implentation of MPI.

Listing 4.5 shows an excerpt from the template TILEncore-Gx36 code. The application
performs normal MPI initialization, then enters a command loop that waits for signals from
the host. The host either sends a function code that signals the TILEncore-Gx36 to begin
execution of a specific compute kernel (via the switch statement in the main loop), or sends
a finish command which tells the TILEncore-Gx36 to cleanup and exit. Details about the
device-side compute kernel are discussed below. Note that while this was implemented on
the TILEncore-Gx36, this execution model could be used to launch compute kernels on any
device that supports MPI.

The next step for this pass is to begin refactoring the host-side compute kernel. Listing 4.6
shows an excerpt from the result of refactoring a matrix multiply kernel. The original
compute kernel is converted into a partition boundary that is used as a scheduling point for
the compute kernel, while the compute kernel source code is moved to a separate function
(matmul x86 in this example). Note that actual calls to the scheduler are inserted in a
separate pass. Functions are generated for each device – on the GPU, a function which
encapsulates GPU memory management & kernel launches is created in a separate source
code file (named kernels gpu.c) for separate compilation by NVidia’s compiler. For the
TILEncore-Gx36, a function containing MPI Send & MPI Recv calls is inserted into the host
application source near the partition boundary. The device-side code for the TILEncore-
Gx36 is added to a separate file (named kernels mpi.c, which contains the template source
code in listing 4.5) for compilation by Tilera’s compiler. Within the partition boundary, a

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 31

int main (int argc , char∗∗ argv) {
int f i n i s h e d = 0 ;
MPI Status m p i s t a t u s ;
MPI Init(&argc , &argv) ;

while (! f i n i s h e d) {
int f unc t i on code = INT MAX;
MPI Recv(& funct ion code , 1 , MPI INT , HOST, 1 ,

MPI COMM WORLD, & m p i s t a t u s) ;

switch (f unc t i on code) {
case . . .
case FUNCTION CODE END:

f i n i s h e d = 1 ;
}

}

MPI Final ize () ;
return 0 ;

}

Figure 4.5: TILEncore-Gx36 initialization & wait loop (device-side)

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 32

void matMul(int dim , f loat ∗C, const f loat ∗A, const f loat ∗B) {
int par t i t i on num = 0 ;

/∗ C a l l to s c h e d u l e r added in l a t e r pass ∗/

switch (pa r t i t i on num) {
case 1 :

matMul mpi (dim , c , a , b) ;
break ;

case 2 :
matMul gpu (dim , c , a , b) ;
break ;

default :
matMul x86 (dim , c , a , b) ;
break ;

}
}

Figure 4.6: Result of partitioning a matrix-multiply kernel (host-side)

switch statement is inserted that switches to the different partitions based on the return
value from a call to the scheduler. At this point, the application is able to call different
functions which correspond to launching the compute kernel on a given device; however,
there is still signficant work to be done.

The partitioner then consumes information generated by previous passes, and in particular,
the kernel interface pass. It reads the inputs & globalInputs pragmas to generate a
list of variables that must be transferred to the device, and the outputs & globalOutputs

pragmas to generate a list of variables that must be transferred back to the host. In addition,
it gathers the function & class definitions required by the kernel, stored in functionsNeeded

& classesNeeded clauses. The partitioner can then begin device-specific code generation.

For the GPU, the partitioner copies all necessary function & class definitions into kernels gpu.c

so they are visible for compilation. In addition, it copies the compute kernel source into a
function, representing the GPU’s partition, to be transformed into CUDA (called matMul gpu

in this example). This entire source file is fed as input to OpenMPC, which generates all re-
quired GPU dynamic memory management (including allocation/deallocation & data trans-
fers) and the compute kernel specification in CUDA. This file is given to nvcc and linked
against the original application as an implementation of the compute kernel for GPUs.

Refactoring to provide an implementation of the compute kernel for the TILEncore-Gx36
is more complex – listings 4.7 and 4.8 show an example for matrix multiplication. The
partitioner again copies all necessary function & class definitions into the device-side source

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 33

void matMul mpi (int dim , f loat ∗C, const f loat ∗A, const f loat ∗B) {
MPI Status m p i s t a t u s ;
int func num = 1UL;
MPI Send(& func num , 1 , MPI INT , DEVICE, 1 ,

MPI COMM WORLD) ;
unsigned long A s i z e = g e t s i z e (A) / s izeof (const f loat) ;
MPI Send(& A s i z e , 1UL, MPI UNSIGNED LONG, DEVICE, 1 ,

MPI COMM WORLD) ;
MPI Send (A, A s i z e , MPI FLOAT, DEVICE, 1 ,

MPI COMM WORLD) ;
unsigned long B s i z e = g e t s i z e (B) / s izeof (const f loat) ;
MPI Send(& B s i z e , 1UL, MPI UNSIGNED LONG, DEVICE, 1 ,

MPI COMM WORLD) ;
MPI Send (B, B s i z e , MPI FLOAT, DEVICE, 1 ,

MPI COMM WORLD) ;
unsigned long C s i z e = g e t s i z e (C) / s izeof (f loat) ;
MPI Send(& C s i z e , 1UL, MPI UNSIGNED LONG, DEVICE, 1 ,

MPI COMM WORLD) ;
MPI Send (C, C s i z e , MPI FLOAT, DEVICE, 1 ,

MPI COMM WORLD) ;
MPI Send(&dim , 1UL, MPI INT , DEVICE, 1 ,

MPI COMM WORLD) ;
MPI Recv (C, C s i z e , MPI FLOAT, DEVICE, 1 ,

MPI COMM WORLD, & m p i s t a t u s) ;
}

Figure 4.7: TILEncore-Gx36 partition (host-side)

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 34

void matMul t i l e ra (void) {
MPI Status m p i s t a t u s ;
unsigned long A s i z e ;
const f loat ∗A;
MPI Recv(& A s i z e , 1UL, MPI UNSIGNED LONG, HOST, 1 ,

MPI COMM WORLD, & m p i s t a t u s) ;
A = (const f loat ∗) (mal loc (s izeof (const f loat) ∗ A s i z e)) ;
MPI Recv (A, A s i z e , MPI FLOAT, HOST, 1 ,

MPI COMM WORLD, & m p i s t a t u s) ;
unsigned long B s i z e ;
const f loat ∗B;
MPI Recv(& B s i z e , 1UL, MPI UNSIGNED LONG, HOST, 1 ,

MPI COMM WORLD, & m p i s t a t u s) ;
B = (const f loat ∗) (mal loc (s izeof (const f loat) ∗ B s i z e)) ;
MPI Recv (B, B s i z e , MPI FLOAT, HOST, 1 ,

MPI COMM WORLD, & m p i s t a t u s) ;
unsigned long C s i z e ;
f loat ∗C;
MPI Recv(& C s i z e , 1UL, MPI UNSIGNED LONG, HOST, 1 ,

MPI COMM WORLD, & m p i s t a t u s) ;
C = (f loat ∗) (mal loc (s izeof (f loat) ∗ C s i z e)) ;
MPI Recv (C, C s i z e , MPI FLOAT, HOST, 1 ,

MPI COMM WORLD, & m p i s t a t u s) ;
int dim ;
MPI Recv(&dim , 1UL, MPI INT , HOST, 1 ,

MPI COMM WORLD, & m p i s t a t u s) ;

. . . OpenMP compute ke rne l . . .

MPI Send (C, C s i z e , MPI FLOAT, HOST, 1 ,
MPI COMM WORLD) ;

}

Figure 4.8: TILEncore-Gx36 compute kernel (device-side)

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 35

code file, kernels mpi.c. The compute kernel is copied to the device-side application, but
is augmented to handle data transfers. First, the partitioner assigns the compute kernel a
function number that the host sends to the device to signal which compute kernel should be
executed by the TILEncore-Gx36; this number is simply a running counter for the number
of compute kernels that have been partitioned onto the device, and is incremented for each
compute kernel moved to kernels mpi.c. Then, the partitioner inserts calls to MPI Send

& MPI Recv on the host & device, respectively, to transfer all inputs to the device. For
data whose size is known at compile-time, the partitioner inserts transfer calls with the size
hardcoded into the call site. For data whose size is unknown at compile-time (e.g. anything
allocated on the heap) the partitioner inserts calls to a memory management runtime library
to get the size of the data (seen as calls to get size in figure 4.7). It then inserts calls to
send the size of the data to the device, which receives the size and allocates memory for
the data. Finally it sends the data to the device via another MPI Send/MPI Recv pair. For
outputs, the reverse process occurs – the device sends data to the host through MPI Send &
MPI Recv, respectively. Finally, the partitioner inserts calls to free the memory previously
allocated on the device side; the device-side application then returns to the wait loop to wait
for another command from the host. If at least one compute kernel is to be launched via
MPI, the partitioner must add several things to the host application. First, it adds calls to
MPI Init and MPI Finalize in the main function so that the MPI runtime initializes and
exits normally. Additionally, a custom MPI datatype is generated (using the MPI datatype

capability to dynamically specify data types) for each class that does not contain pointers
and is used in the compute kernel; classes that contain pointers are serialized and sent
manually by the partitioner. This new datatype is inserted into both the host application
and kernels mpi.c. Finally, the partitioner inserts code in the host application that sends
the exit signal (the value FUNCTION CODE END in figure 4.5) which notifies the device that it
should exit.

Refactoring – Add Memory Tracking

This pass is responsible for adding calls to track memory as it is allocated & deallocated
within the application. This pass only needs to refactor host-side code; device memory
management strictly depends on what is allocated on the host.

The memory management library is used to store allocated memory locations and their sizes.
During memory allocation, a pointer to the start of the data and the size of that data are
passed to the library either explicitly or implicitly. If the data is allocated on the stack,
the partitioner inserts calls to register pointer within the scope in which that variable is
live. If the data is allocated on the heap, the data is tracked implicitly using a link-time
trick. By using the -wrap <func-name> command-line argument, the linker to replaces all
calls to <func-name> with calls to wrap <func-name>. The memory management library
wraps calls to malloc, calloc and realloc with simple stubs that internally calls the
associated memory management function and records the results via register pointer

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 36

Figure 4.9: Example call to get size and the red-black tree modification

before returning the pointer to the application. De-allocation is similar; the partitioner
inserts calls to unregister pointer when exiting the live scope of data in static memory,
and a wrapped free stub calls unregister pointer. for dynamic memory. Internally,
the library tracks data using a modified red-black tree that solves problems created by the
flexibility of pointers. While the data lives in a single location in memory, applications can
use pointers to arbitrary locations within a memory block. For example, consider a recursive
implementation of binary search. The function might contain pointer arguments for the
low- and high-part of the range of data being searched. Depending on what value is being
searched for, either the low or high pointer is updated and the function is called again. While
these pointers are simply pointing to different parts of a single piece of data, the compiler
cannot in general connect the pointers to the piece of data they are accessing (alias analysis
is potentially unsolvable at compile time). The modification solves this problem by the fact
that pointers to any location in memory within the range of a registered datum’s specified
size can be linked to that piece of data. Therefore when looking up sizes of data via the
get size API, the red-black tree is first searched for the specified memory location of the
pointer. If the pointer is not found, the immediate predecessor of the previously checked leaf
node (in the ordering imposed by the structure of the tree) is examined, and if the pointer
is within the data’s registered memory range, that datum’s size is returned. Consider the
sub-tree of a red-black tree in figure 4.9 being searched by a call get size(0x8800).

1. The node representing data at 0x4000 is searched, and the right child is taken.

2. The node representing data at 0x8000 is searched, and the right child is again taken.

3. The leaf node representing data at 0xa000 is searched, and it is determined that location
0x8800 is not in the tree. The search traverses back to the immediate predecessor of
the leaf node (in this case, the node representing data at 0x8000).

4. The pointer is determined to be within that datum’s range, and 4kB is returned.

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 37

int main (int argc , char∗∗ argv) {
reg i s ter mm wrappers () ;
a t e x i t (unregister mm wrappers ()) ;
. . .

}

Figure 4.10: Registering & unregistering the memory management runtime library

Finally, get pointer can be used to get the correct version of a pointer (i.e. convert a pointer
to the middle of some data to the head of that data) using the preceding modification.

This pass iterates through every function in the application and adds explicit tracking for
the following scenarios:

• Array types allocated on the stack

• Scalar data that has its address taken (and thus can have side effects if the generated
pointer is passed to a function)

For data on the stack, calls to register pointer are added at the beginning of the functionin
which they are live, and calls to unregister pointer are added at every return point, since
those pieces of data are only live for the duration of that function invocation. For dynamic
memory functions, calls to malloc, calloc, realloc and free are wrapped using the linker
wrapping mechanism. The wrapping mechanism swaps calls to the wrapped function (e.g.
malloc) with calls to the wrapped function (e.g. wrap malloc). The wrapped versions
of the functions register (for allocation functions) and unregister (for free) the data before
calling the real version of the functions.

The last step of this pass is to insert initialization and teardown code to ensure that the
memory management library does not interfere with C standard library process creation &
teardown. Initially the memory management library is disabled, meaning calls to any of the
memory management routines simply pass through the wrappers. At the start of main, the
wrapper is enabled and a call is registered to be executed before teardown that disables the
library. Listing 4.10 shows an example of this process.

Refactoring – Add Scheduler Calls

The final pass in the partitioner hooks the application into the scheduler, which is dis-
cussed in more detail in section 4.2.3. In each partition boundary, it inserts a call to
select implementation, an application-facing API from the client-side scheduling library.
This call passes a set of compute kernel features (extracted using the feature extractor de-
scribed in section 4.2.2) via IPC to the scheduler daemon. The daemon combines these

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 38

features with external workload data and returns a device decision to the application (the
return value from the call to select implementation). This pass parses the feature files
generated from the feature extractor and initializes a features object with the generated
values. It also generates some runtime-only features, including the amount of data being
transferred between the host & device, and the number of parallel work items (equivalent
to the number of loop iterations for a parallel omp for loop). Finally, it inserts the call
to the client-side library. Once this call returns a value, the application switches to the
appropriate partition and executes the compute kernel on the associated device. After the
compute kernel finishes and control is returned to the application, the application notifies
the scheduler (with a call to cleanup kernel) so that the scheduler can update its exter-
nal workload statistics accordingly. Figure 4.11 shows the results from this pass for the
matrix-multiply example.

At this point, the partitioner has finished refactoring the application. The GPU partition
(completely self-contained in kernels gpu.c) is run through OpenMPC to generate CUDA
code. Individual partitions are then compiled for their device using a combination of gcc

for x86 & TILEncore-Gx36 and nvcc for NVidia GPUs. This binary is launched normally if
the TILEncore-Gx36 is not used or via mpiexec to execute on the TILEncore-Gx36.

4.2.2 Extracting Features from OpenMP Kernels

In order to use machine learning models to perform heterogeneous scheduling, it was neces-
sary to characterize compute kernels based on what types of operations the kernels executed
in addition to the context in which they were executed (i.e. the external workload on the co-
processors in addition to the current application). The feature extractor was developed and
implemented as a plugin pass for GCC to capture the former, while the latter was collected
at runtime by the scheduler (discussed in section 4.2.3).

The pass implementing the feature extractor was inserted into GCC’s internal pass scheduler
after all optimizations had been performed on GCC’s SSA-GIMPLE intermediate represen-
tation [14] so that the feature counts closely represented the code ultimately generated by
GCC. Features were extracted on a per-function basis; the feature extractor iterated through
every basic block in a function’s control flow graph, and through each statement within the
basic block. Table 4.2 shows the features extracted from the applications.

There are two categories of features collected for the machine learning model – kernel features
and external workload features. Kernel features are features that are specific to a given
compute kernel. These consist of the types of operations a compute kernel executes (features
1 - 9), the amount of data required by the kernel (features 10 & 11) and the amount of parallel
work available within the compute kernel (feature 12). Features 1-9 were extracted by the
feature extractor and scaled by a profiling run, while features 10-12 were collected during
the profiling run. Note that during the refactoring phase of the partitioner, it reads the
output from the feature extractor and adds them to the partition boundary, as mentioned

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 39

void matMul(int dim , f loat ∗C, const f loat ∗A, const f loat ∗B) {
int par t i t i on num = 0 ;
stat ic int i n i t = 0 ;
stat ic k e r n e l f e a t u r e s k e r n e l f e a t u r e s ;
i f (! i n i t) {

/∗
∗ Compiler−e x t r a c t e d f e a t u r e s are s e t on ly
∗ once because they do not change during
∗ e x e c u t i o n
∗/

. . . compi ler−ex t rac t ed ke rne l f e a t u r e s . . .
i n i t = 1 ;

}
k e r n e l f e a t u r e s . memory tx = 0 ;
k e r n e l f e a t u r e s . memory rx = 0 ;
k e r n e l f e a t u r e s . memory tx =

k e r n e l f e a t u r e s . memory tx + g e t s i z e (A) ;
k e r n e l f e a t u r e s . memory tx =

k e r n e l f e a t u r e s . memory tx + g e t s i z e (B) ;
k e r n e l f e a t u r e s . memory tx =

k e r n e l f e a t u r e s . memory tx + g e t s i z e (C) ;
k e r n e l f e a t u r e s . memory tx =

k e r n e l f e a t u r e s . memory tx + 1 ;
k e r n e l f e a t u r e s . memory rx =

k e r n e l f e a t u r e s . memory rx + g e t s i z e (C) ;
k e r n e l f e a t u r e s . work items = dim ;
par t i t i on num = se l e c t imp l ementa t i on (& k e r n e l f e a t u r e s) ;

switch (pa r t i t i on num) {
case 1 :

matMul mpi (dim , c , a , b) ;
break ;

case 2 :
matMul gpu (dim , c , a , b) ;
break ;

default :
matMul x86 (dim , c , a , b) ;
break ;

}
c l e anup ke rne l (& k e r n e l f e a t u r e s) ;

}

Figure 4.11: Partition boundary with features & scheduler calls

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 40

Kernel Feature Description

1 num instructions Number of instructions
2 int ops Number of integer math operations
3 float ops Number of floating-point math operations
4 boolean ops Number of bitwise boolean operations
5 load ops Number of memory load operations
6 store ops Number of memory store operations
7 func calls Number of function calls
8 intrinsic math ops Number of intrinsic math operations
9 cond branches Number of conditional branches
10 memory tx Number of bytes transferred to device
11 memory rx Number of bytes transferred back from device
12 work items Number of parallelizable work items

Table 4.2: Compute kernel features collected from OpenMP applications

in listing 4.11.

We chose these features because they represent the major components of any modern micro-
processor. The integer, floating-point and boolean operations represent the major comput-
ing functional units in a processor – different processors have different numbers of functional
units to handle these types of operations, resulting in differing compute throughputs (built-in
functions stress the transcendental functional units of processors, or the software implemen-
tations in the absence of those units). The loads and stores represent, at a very basic level,
the memory hierarchy of a system. Different processors access memory in different ways and
have different memory bandwidth. Function calls and conditional branches represent the
processor’s ability to mitigate the impact of control flow and divergence in an application.
Finally, the last features represent the runtime’s efficiency in handling data transfers and
the differing levels of parallelism in the applications. Thus, these features allow the machine
learning model to evaluate the mapping of compute kernel to architecture based on what
the compute kernel is actually executing.

4.2.3 Heterogeneous Scheduling Daemon

As mentioned in section 4.1, the scheduler was implemented as a daemon process that waits
in the background for applications to request scheduling decisions. On startup, the sched-
uler opens up a Unix socket for IPC using the file /var/run/het sched.sock and waits
for incoming connections. When an application wants to request a scheduling decision, it
connects to the server through the Unix socket file and sends a message containing the ex-
tracted features to the server, which makes a scheduling decision and notifies the client of

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 41

Figure 4.12: Scheduling compute kernels

the decision in a return message. The connection is then closed and the server re-enters the
waiting state. Similarly, when a compute kernel finishes execution it re-opens the connection
to the server and sends a message that notifies the server that it has finished execution on
a particular architecture. The server updates its internal accounting information and closes
the connection, re-entering the waiting state. The daemon exits either when it receives a
message instructing the server to exit, or receives the exit signal SIGINT. Figure 4.12 shows
the general flow of scheduling for the refactored OpenMP applications.

The server is responsible for maintaining external workload state of the system, since there
is no simple way to query current load from either the Tesla C2075 or the TILEncore-
Gx36. Thus the scheduler maintains the external workload features for the machine learning
model with cooperation from the applications themselves. External workload features, shown
in table 4.3, are the features that represent the current state of the system in regards to
workload on the individual compute resources. Feature 1 (load avg) represents the load
average of the system as reported by Linux in /proc/loadavg. From the Linux manual page
for proc, this number represents “the number of jobs in the run queue (state R) or waiting
for disk I/O (state D) averaged over 1, 5, and 15 minutes” – we use only the load averaged
over the past minute. Features 2-4 are internal run queues for each of the architectures in
the system maintained by the scheduler. Applications who request a scheduling decision
for a compute kernel (via the client-side API select implementation) are added to the
run queue for the architecture on which they are scheduled. When the compute kernel
completes, the application notifies the scheduler (via cleanup kernel), which subsequently
removes the application from the appropriate run queue. If an application does not want a
scheduling decision from scheduler but prefers to make its own scheduling decisions, it can
notify the server using a call to notify server, so that the server can still make decisions
based on accurate external workload information (these applications should also still call
cleanup kernel following compute kernel execution). Finally, applications can request the

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 42

run-queues from the server using a call to get table.

External Workload Feature Description

1 load avg Average host load
2 runq x86 Number of kernels running on the host (Opteron 6376)
3 runq gpu Number of kernels running on the Tesla C2075
4 runq tilera Number of kernels running on the TILEncore-Gx36

Table 4.3: External workload features maintained by the scheduler

4.2.4 Machine Learning

Machine learning has gained popularity in recent years as a means for generating models
that achieve good accuracy in analysis and decision making. OpenCV [57] is an open-source
computer vision library that contains a machine-learning component with several supervised
machine-learning algorithms. We leveraged this library to build and analyze our machine
learning models. The only development required for using this library was to build a wrapper
to get data in and out of the machine learning algorithms.

There are two phases in the machine learning process – a training phase and a testing
phase. Generally speaking, for supervised machine learning the training phase involves
generating a set of training data (consisting of input features and the desired output from
the model) which is then handed to the machine-learning algorithm to train the model.
The testing phase involves checking the predictions of the trained models by handing the
model the input features and checking the output decisions. For this work, our training data
consisted of compute kernel features from the applications, external workload features from
the scheduler, and normalized runtimes on all three architectures (ranking them in relative
efficiency for a compute kernel), generated from the following equation:

E = Rx86

Ri
,

Where E is the relative efficiency, Rx86 is the runtime on the Opteron 6376 and Ri is the
runtime for architecture i. Therefore we rolled the scheduling process, including mapping
of compute kernels to an architecture and minimizing workload interference, into a single
decision making model. The models generated from this training data produced an output
for the predicted relative efficiency of the compute kernel on each architecture given an
architecture’s external workload.

Additionally, in order to eliminate features within the machine learning algorithm we used
principle component analysis (PCA) to reduce the set of input features to the machine

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 43

learning algorithm. The PCA process projects the set of all input features (all compute
kernel & external workload features) down to a smaller set of principle components. PCA
projects features in such a way as to remove linearly correlated features, or features that
provide redundant information – the goal is to create a minimal set of principle components
while maintaining as much variability as possible in the feature set. A trivial example
might be that it may be able to statistically determine that function calls correspond to
an increase in loads & stores (for the precall/postcall sequence inserted by the compiler)
and can therefore combine them into a single feature without a loss of information. This
process is applied to all combinations of input features to reduce the feature set, speeding
up training/evaluation of models by focusing only on the variability in the feature set. The
PCA process for our feature sets is discussed further in 4.3.

We denoted the following terms in the training & testing phases:

• Training application – the application for which training data is being generated (train-
ing phase only)

• Testing application – the application currently being evaluated (testing phase only)

• External applications – the set of applications used to generate external workload (both
phases). For the training phase, this is the set of all applications minus the training
application. For the testing phase, this is the set of all applications minus the testing
application.

The first phase of the machine learning process involved generating training data from our
set of applications to build the model. Each OpenMP application was selected as the training
application exactly once. Training data was generated for each given training application by
running the training application on each of the three architectures at varying workload levels.
To generate external workload, a background script was run that looped infinitely through
a list of all external applications, placing them on architectures randomly. Each instance of
this background script generated an extra level of external workload. For example, if two of
these background scripts were running, then the system experienced an external workload of
two (owing to the fact that each script was running a single benchmark application at a time).
So, each training application was run 50 iterations for every combination of architecture and
external workload, up to an external workload level of three (i.e. three background scripts
launching external applications).

There is a problem that arises when generating training data with external workload. Be-
cause we are using supervised machine learning to generate our models, we must have ex-
haustive training data to cover all cases that can arise. This is very hard to achieve in the
case of external workload; this requirement specifies that we must have training data for
every combination of training application and external workload (i.e. run-queue length)7.

7This problem would be exacerbated if we had additionally chosen to track the features of the external

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 44

Because generating exhaustive data in this fashion is not scalable, we chose to instead gen-
erate a large amount of targeted data and use the k-nearest neighbors to fill in gaps. To
generate this targeted data, we ran each application on a single architecture at a time and
then varied the external workload on the same architecture; for example, we ran a training
application on the Tesla with no other external applications, one external application on the
Tesla, two external applications and three external applications. This process was repeated
for each benchmark on each architecture (on the TILEncore-Gx36, it was performed up
to only a single external application). Then, this data was stitched together to create the
training data set – all possible permutations of external external workload were populated
by by the targeted training data, i.e. for a specific external workload of two applications
running on the Opteron and one on the Tesla, all data targeted data points with an external
workload of two on the Opteron (from all applications) were averaged and used to populate
the relative efficiency output for the Opteron, while all targeted data points with an external
workload of one on the Tesla were used to populated the relative efficienty output for the
Tesla.

The testing process was similar to the training process. Each testing application was run in
conjunction with varying levels of external workload, and the speedup was determined from
the application’s runtime. Applications were tested using leave-one-out cross validation, a
standard machine learning methodology for testing the effectiveness of the generated mod-
els. Leave-one-out cross validation specifies that training data from all applications except
the testing application is used to generate a machine-learning model, i.e. training data is
generated for the external applications. Then during testing, the scheduler is responsible for
scheduling the external applications in addition to the testing application (whose features it
has not seen during training). The effectiveness of the model is evaluated on unseen features
to show that it can extrapolate to new applications. This was used for our testing process,
which is discussed in more detail in 4.3.

We used an artificial neural network (ANN), a standard machine-learning algorithm, to
generate and evaluate our models. Other approaches have used decision trees [22] and
support-vector machines [35], but we found that artificial neural networks worked better
in practice. ANNs, illustrated in figure 4.13, are an abstract model of a brain represented
as a graph. In the graph, vertices are neurons and edges are synapses. Neural networks
consist of several layers, and depending on the neural network, are fully connected between
layers (i.e. every neuron in a given layer is connected to every neuron in the layer before it
and after it). The input layer, or the first layer, contains a neuron for every input feature fj
(compute kernel & external workload features). The output layer, i.e. the last layer, contains
a neuron for the relative efficiency Ei of every architecture. There are zero or more hidden (or
middle) layers between the input and output layers, containing varying numbers of neurons.
Values flow through the network from the input to output layer by propagating neuron values
along synapses, each of which has an associated weight. Neurons are “activated” using some

workload, as we would have to have training data for every combination of training application, run-queue
length and external workload application.

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 45

Figure 4.13: Artificial Neural Netowrk

activation function8 A(x) that describes how the output from the neuron scales with the
inputs. The value for a node y in layer i, Vy, is the sum of the activation function output of
all nodes in the previous layer Ni−1 multiplied by the edge weight e of the synapse connecting
the two nodes:

Vy =
∑

x∈Ni−1
A(Vx) ∗ exy

The input layer’s value is the exception, as the values of these neurons are set by the input
features. Training the ANN consists of setting the edge of weights of all synapses to a random
value and adjusting them until the outputs generated by the network are within some speci-
fied error range compared to the outputs specified in the training data. The ANN is trained
using the famous backpropagation algorithm [51], which calculates the errors throughout
the network and updates them based on gradients between the activation function and the
output error. The process of propagating values forward, back-propagating calculated errors
and adjusting weights based on the gradients is repeated until the errors are within a speci-
fied range. Neural networks with a single hidden layer have been proven to be able to model
any function [44]; hence, we chose to use ANNs to make scheduling decisions.

8Most neural networks, including ours, use the sigmoid function as the activation function

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 46

4.3 Results

The evaluation process consisted of generating a set of training data, training machine learn-
ing models (using leave-one-out cross validation), and testing the resulting scheduling mod-
els in live execution using varying levels of external workload. We evaluated our scheduling
technique on 14 refactored applications (refactored with the partitioner and OpenMPC, with
manual modifications when necessary) from Rodinia and Parboil. Applications that were
written in C++ were ported to C and all applications were compiled with aggressive opti-
mizations enabled, i.e. -O3. We evaluated the trained models for the three architectures,
shown in table 4.4, in two setups. In the first setup, we scheduled applications onto the
Opteron CPU and the Tesla GPU (ignoring the TILEncore-Gx36), while in the second setup
we scheduled onto the Opteron CPU and the TILEncore-Gx36 coprocessor (ignoring the
Tesla)9. For each setup, we trained a complete set of models using leave-one-out cross val-
idation and performed a set of experiments to evaluate the ability of the trained models to
address two aspects of the scheduling problem:

1. Map a compute kernel to the most appropriate architecture, i.e. the architecture that
executed the compute kernel the fastest (without external workload)

2. Adjust the mapping in the presence of varying levels of external workload

Opteron 6376 Tesla C2075 TILEncore-Gx36

Vendor AMD NVidia Tilera
of Cores 16 448 36

Frequency (GHz) 2.3 1.15 1
Core Design Superscalar/ OoO SIMT VLIW

Memory (GB) 32 6 8
Connection N/A PCIe 2.0 x16 PCIe 2.0 x8
Compiler GCC 4.4.7 NVCC 5.5.0 Tilera GCC 4.4.6

Operating System CentOS 6.4

Table 4.4: Architectures used for evalation of OpenMP scheduling

We evaluated two types of models for the first setup – models that did not incorporate exter-
nal workload (static models) and models that did incorporate external workload (dynamic
models). We only evaluated dynamic models for the second setup, as all applications were
more efficient on the Opteron versus the TILEncore-Gx36.

9We divided the three architectures into two setups based on the relatively poor compute performance
of the TILEncore-Gx36. Even with external workload, the models were likely to forego scheduling onto the
TILEncore-Gx36 in favor of the Opteron or Tesla

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 47

Value Time (µs)
Request Scheduling Decision 62

Cleanup After Kernel 29
Machine Learning Evaluation (static) 10

Machine Learning Evaluation (dynamic) 12

Table 4.5: Scheduling overheads for OpenMP applications

4.3.1 General Overheads

Table 4.5 shows the overheads associated with various aspects of the scheduling process,
including communication with the scheduler and evaluation of the machine learning model
(reducing input features by PCA and generating output values from the ANN)10. As men-
tioned in section 4.2.4, PCA was used to reduce the dimensionality of the input feature set
without loss of information (i.e. maintaining variability). For the static models we reduced
the input feature set down to five dimension while retaining 93% of variance; for the dynamic
models, we reduced the feature set down to ten dimensions while retaining 96% of variance.
The dimensionality of the reduced feature set dictated the number of neurons in the in-
put layer for the generated ANNs. There were three output neurons for every generated
ANN, corresponding to the predicted relative efficiency for each architecture. Each ANN
also contained a single hidden layer. The number of neurons in the hidden was determined
empirically – there were five neurons for the static models and 17 for the dynamic model.
It should be noted that the larger size of the ANN for the dynamic models reflects the fact
that the additional workload features provide a significant amount of extra information, and
thus a more complex network is required to accurately model the run-time architectural
interactions.

Overall, there was approximately 100µs of overhead for scheduling & cleanup. Communica-
tion consumed the majority of that time, requiring several context switches to perform IPC
(as mentioned in 4.2.3). This could possibly be reduced by converting the scheduler into a
kernel module, invoked via system call; however, it could be argued that for any compute
kernel where 100µs of overhead is unacceptable should simply be run on the host and should
not use the scheduler.

4.3.2 Setup 1: Opteron 6376 & Tesla C2075

This setup, comprised of a server-class CPU & server-class GPU, was similar to most het-
erogeneous setups in that it paired together latency- and throughput-based architectures to
handle a diverse set of applications. We wanted to evaluate the ability of the models to first,

10These times were obtained on the Opteron 6376

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 48

predict the relative efficiency of a given compute kernel on the two architectures and second,
schedule in a workload-aware fashion to avoid overloading an architecture when possible.

Benchmark Best Architecture Predicted Correctly?
backprop Opteron X

bfs Opteron X
cutcp Tesla X

hotspot Opteron X
lavaMD Opteron X

lbm Tesla X
lud Tesla X

mri-q Tesla X
pathfinder Opteron X

sad Opteron X
sgemm Tesla X
spmv Opteron X
srad Opteron X

stencil Tesla 5

Table 4.6: Best architecture and predictions from our model for benchmarks

We first evaluated the ability of the models to predict the best architecture for the compute
kernels in an application. Table 4.6 shows the list of benchmarks, on which architecture the
application’s compute kernels executed most efficiently, and whether our model was able to
predict the best architecture. The table indicates that the model was able to learn the correct
mappings for all benchmarks except the stencil computation benchmark. We investigated
this benchmark further to understand why the models were not able to predict the best
architecture.

Case Study: Stencil

The stencil benchmark from Parboil embodies a traditional stencil computation – it is an
iterative Jacobi/7-point stencil performed on a 3D grid. We investigated this benchmark
further to understand the model’s misprediction. Figure 4.14 shows the structure of the
computational kernel for this implementation. There are 3 nested for-loops, with the outer
loop parallelized using OpenMP. According to the semantics of OpenMP, in this compute
kernel consecutive threads are assigned consecutive iterations (i.e. consecutive values of i)
and are responsible for performing the stencil computation to be stored in the grid Anext.
The write pattern to Anext varies based on all 3 loop indices; however, writes by consecutive
threads are to adjacent elements in Anext, due to the assignment of loop iterations to threads.
This has a striking impact on performance on CPUs versus GPUs. On GPUs, memory

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 49

#pragma omp p a r a l l e l for
for (int i = 1 ; i < (nx−1); i++)

for (int j = 1 ; j < (ny−1); j++)
for (int k = 1 ; k < (nz−1); k++)

// Perform s t e n c i l computation
Anext [i + (nx ∗ (j + (ny ∗ k)))] = . . .

Figure 4.14: Computational kernel for stencil

L1 Load % of Total L1 Store % of Total
Misses Loads Misses Stores

Original 12,742 82% 1,625 79%
Fixed 419 2.7% 104 5.2%

Table 4.7: Cache statistics for stencil from perf

coalescing plays an important part of kernel optimization – reads and writes from multiple
threads can be combined into a single access, increasing memory bandwidth utilization.
On CPUs, however, the case is drastically different. Because caches operate at cache line
granularity, threads on separate cores writing to different elements within the same cache line
cause false conflicts, decreasing bandwidth utilization. The cache coherency protocol must
constantly transfer exclusive write access of a cache line between separate cores, creating
a ping-pong effect and drastically reducing the cache hit rate. Performing a simple loop-
index reordering (a valid optimization since all writes happen to independent elements)
alleviates this issue. We implemented this fix and profiled both the original and fixed version
of stencil to quantify this cache behavior. Table 4.7 shows the numbers from the cache
counters obtained using perf, where each number is in millions of events counted. Performing
this simple loop-index re-ordering results in a drastic reduction in false cache conflicts and
greatly improves performance. This modified version of stencil showed a 4x speedup over
the original CPU version, and even surpassed the performance of the GPU version. This
highlighted a hole in our feature-set – we did not consider any form of memory access
patterns in our feature set, and were unable to predict that the original implementation
of stencil was more suitable for the GPU. We added memory coalescing features to the
features extractor for OpenCL kernels, discussed in section 5.2.2.

Next, we analyzed the ability of the models to adjust the scheduling decisions in the midst
of external workload. Figures 4.15-4.18 show the speedup obtained by the individual bench-
marks, scheduled onto either the 16 Opteron cores or the 448 Tesla cores, over the baseline
of a single Opteron core with no external workload. The graphs contain the results for the
static mapping scheme and for the dynamic mapping scheme using a logscale to display the

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 50

Figure 4.15: Setup 1 – Results of scheduling OpenMP kernels without external workload

Figure 4.16: Setup 1 – Results of scheduling OpenMP kernels with one external application

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 51

Figure 4.17: Setup 1 – Results of scheduling OpenMP kernels with two external applications

Figure 4.18: Setup 1 – Results of scheduling OpenMP kernels with three external applications

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 52

speedups. The figures show speedups for external workload levels 0-3, respectively (recall
that an external workload level of 1 means a single background script launched external
applications during evaluation of the testing application). Figure 4.15 additionally has a line
superimposed on the graph which shows the running time of the application for the baseline
execution. The scale for the running time of the applications is shown to the right of the
graph, and is in nanoseconds.

With no external workload, we were able to achieve an overall 11x speedup over the base-
line due to the introduction of parallelism and heterogeneity. There were minor differences
in speedups obtained by the static and dynamic schemes due to variability in application
runtimes, but the speedups obtained are comparable in both types of models. Interestingly,
backprop, bfs, hotspot and pathfinder experienced slowdowns in our testing. The super-
imposed line shows that backprop, hotspot and pathfinder are very short-running. The
combination of small compute kernel execution times (which leads to scalability issues with
increasing numbers of threads) and memory-management/scheduling overheads caused a net
slowdown. However, bfs has a relatively longer total running time. The slowdown for this
application was caused not by the running time of the application, but by the fact that
bfs launches a short-running compute kernel multiple times, causing non-negligible schedul-
ing overhead. However, longer-running benchmarks experienced large speedups by enjoying
the benefits of the two architectures. The applications scheduled onto the GPU, such as
lud and mri-q experienced extremely large speedups; this highlighted the fact that even
a naive translation from OpenMP to CUDA allows fantastic performance gains for some
highly-parallel applications (the compute kernel for mri-q contains 250,000 work items).

As expected, when the external workload increases the speedup per benchmark decreases
because the system executes additional benchmarks, each of which competes for compute
resources in the system. However, the speedups obtained using the dynamic scheme degrade
more gracefully compared to the speedups obtained using the static scheme (recall that
speedups are shown on a logarithmic scale), to the point of a 4x increase over the static
model in figure 4.18. Occasionally, as in lbm and lud in figure 4.18, the static mapping
scheme might outperform the dynamic mapping scheme due to the model seeing the “wrong”
external workload. For example, application A (which is statically mapped to the Tesla)
might request a scheduling decision from the scheduler, which has application B in the Tesla
run-queue. However, application B has finished execution and is waiting for cleanup, but is
behind application A in the server queue. Application A could be scheduled onto the Opteron
because the scheduler believes there are more applications in the Tesla run-queue. Thus, it
might make a bad decision from outdated accounting. Notice that speedups obtained for
stencil spike as external workload increases; this is an artifact from the model misprediction
discussed above. As external workload increases, the scheduler moves stencil to the Tesla
more frequently, subsequently increasing the speedup.

One interesting trend emerges as the amount of workload increases – the performance of
applications that were mapped to the Tesla degrades less than applications that were mapped
to the Opteron. This is because of the way threading and multi-tasking occurs on the two

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 53

architectures. For the Opteron, scheduling of threads is handled by the Linux scheduler.
During every scheduling epoch, the scheduler is responsible for giving threads “fair” execution
time. This means that threads are swapped on and off the processor more frequently as the
number of threads increases, especially if those threads are compute-intensive. The default
number of threads used by the OpenMP runtime without any direction by the application
is equal to the number of cores in the system. Therefore, if there are four applications,
each inside of a compute kernel, 64 threads are vying for time on the 16 processors. This
chokes the Linux scheduler, causing it to repeatedly swap processes in and out of the cores,
giving each thread a smaller share of execution time and ultimately decimating performance.
This is indicated by the performance of several benchmarks, such as lavaMD, sad, spmv and
srad. These benchmarks go from achieving healthy speedups of 3-10x to ultimately being
slower than the baseline for the highest level of workload. For GPU applications, however,
slowdowns are minimal. This is due to the run-to-completion model of the NVidia driver;
there is no multi-tasking on the GPU itself. Commands (possibly from multiple applications)
are multiplexed into a single command-queue for the device. Compute kernels, once started,
cannot be interrupted and must finish before other kernels or data transfers can be performed.
This eliminates much of the scheduling overhead caused by choking the Linux scheduler –
compute kernels must simply wait their turn in the command queue, but have access to all
compute resources within the device for the length of time necessary to finish kernel execution
(rather than being given decreasing time share on a processor). This problem with the Linux
scheduler indicates that spatial rather than temporal scheduling should be investigated on
the CPU. In other words, applications should cooperatively reduce the number of CPU
threads used for compute kernels to allow threads longer compute time on a CPU and limit
the context-swap storm that ensues when oversubscribing threads onto processors.

The peculiarities of pathfinder’s performance are somewhat related to the previously dis-
cussed issue of threading overhead. Initially pathfinder runs poorly on the Opteron as
mentioned above. However, with increasing workload the dynamic model performs much
better than the static model. This is because pathfinder exhibits inner-loop parallelism,
i.e. the OpenMP parallel region is nested inside of an outer for-loop. This causes a large
amount of threading overhead to initiate a parallel for-loop section and to end one (OpenMP
parallel for-loops have an implicit barrier at the end). Thus, as the system becomes more
and more choked by the threading overhead, the scheduler places more instantiations of
pathfinder on the Tesla, mitigating the bottlenecks.

4.3.3 Setup 2: Opteron 6376 & TILEncore-Gx36

The second setup, containing an Opteron 6376 CPU and the TILEncore-Gx36 coprocessor,
was different from most heterogeneous systems. In this system, we combined a traditional
CPU with a “smart network card” to show that there may be situations where non-traditional
compute resources could be leveraged to alleviate some of the workload of a host processor.
As mentioned previously, none of the compute kernels ran fastest on the TILEncore-Gx36

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 54

Figure 4.19: Setup 2 – Results of scheduling OpenMP kernels with one external application

– therefore, we were only interested in seeing if there were possible performance gains for
offloading to the TILEncore-Gx36 when the host Opteron was oversubscribed.

Figures 4.19-4.21 show the results of scheduling with 1-3 external applications over the
same previous baseline of execution on a single core. There is no graph for scheduling
without external workload – without external workload, all applications were scheduled onto
the Opteron meaning the static and dynamic speedups were essentially equal. The same
applications that previously experienced slowdowns experienced slowdowns in this setup for
the same reasons. However, some applications (such as lud and mri-q) that previously
experienced significant speedups when executing on the Tesla saw smaller or non-existant
speedups in this setup. This is due to the fact that the Opteron is less efficient than the Tesla
for the compute kernels in these applications. Some applications tolerate this switch from
Tesla to Opteron better than others – mri-q sustains large speedups as workload increases,
but lud suffers dramatic slowdowns as the scheduler becomes a bottleneck (it exhibits the
same inner-loop parallelism that plagued pathfinder). Overall these results highlighted
the effects of the constant context swapping in the Linux scheduler. Rather than seeing
10x overall speedups, overall speedups drop to 1.5-3.5x, an awful result considering these
applications use either the 16 cores on the Opteron or 36 cores on the TILEncore-Gx36.

Similarly to the first setup, as the external workload increased the dynamic model adjusted
scheduling decisions to put more work onto the TILEncore-Gx36 as the Opteron became
overloaded. The dynamic model continued to increase its speedup over the static model

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 55

Figure 4.20: Setup 2 – Results of scheduling OpenMP kernels with two external applications

Figure 4.21: Setup 2 – Results of scheduling OpenMP kernels with three external applications

Robert F. Lyerly Chapter 4: Refactoring & Scheduling OpenMP Applications 56

as workload increased, up to a 50% speedup with three external applications. Short-lived
applications (especially backprop and hotspot) experienced especially poor performance as
external workload increased. This is due to the previously mentioned “wrong” workload ex-
perienced by the scheduler, which caused bad scheduling decisions (launching short-running
applications on the coprocessor). Overall, the dynamic model was able to make better
scheduling decisions than the static model, meaning that it was able to utilize a non-compute
device for performance gains in a non-traditional setup.

Chapter 5

Scheduling OpenCL Applications

The partitioner automatically refactored OpenMP applications to be able to execute hetero-
geneously with little-to-no modifications by the developer. It allowed rapid conversion from a
general programming model to device-specific models, letting developers focus on hardware-
software co-design instead of tedious porting work between models; indeed we were able to
work on a first iteration of the heterogeneous scheduling problem and it gave us valuable
insight into the problems that arise with automatic refactoring approaches.

While the partitioner achieved the stated design goals, it was sub-optimal in a variety of
situations:

• The partitioner created unacceptable overheads for short running applications – au-
tomatically tracking memory and mandatory scheduling at partition boundaries can
dominate the running time of some applications with small compute kernels

• The partitioner created unnecessary overheads because of the design decision to sched-
ule at every partition boundary. The semantics of this decision required that all inputs
and outputs be transferred to and from a device for every invocation of every compute
kernel. Applications that invoke multiple kernels in succession1 that operate on the
same data incur overhead from unnecessary data transfers. This could be potentially
mitigated by lazy data transfers, but would require additional overhead to determine
what data is “dirty” and where the most up-to-date copy of the data resides.

• The partitioner inserted calls that transfer data in their entirety – all memory allocated
for a given piece of data is sent to and from compute kernels that may operate only on
a subset of that data.

• OpenMPC, while sufficient as a research tool for transforming OpenMP kernels to
CUDA, was unusable without significant manual modifications to the code, effectively

1That is, without any intervening host code that modifies the data

57

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 58

eliminating any benefits obtained from the tool. Additionally, much of the code gen-
erated for GPUs was sub-optimal, with few adjustments from a CPU implementation
to a GPU implementation.

• Similarly the partitioner is a research tool and although it is stable, it has not been
tested with large applications.

• Our benchmarks, all part of high-performance computing benchmark suites, were well
suited for the massive, fine-grained parallelism model of OpenCL.

Because of these issues, we chose to switch focus to OpenCL applications. Our OpenCL appli-
cation suite, consisting of OpenCL benchmarks from the OpenDwarfs [18], Rodinia [11] [12]
& Parboil [53] benchmark suites, have been written by programmers in a portable program-
ming model, solving most of the problems mentioned above. In addition, it gave us a much
larger set of applications on which to train our machine-learning models. Thus we chose
to shift our efforts away from the engineering work required by the partitioner and instead
focus on the problems of heterogeneous scheduling. This chapter presents heterogeneous
scheduling of OpenCL applications across devices in a system, and is structured similarly to
chapter 4:

1. Section 5.1 discusses the design in our implementation of scheduling for OpenCL com-
pute kernels

2. Section 5.2 presents the implementation details for scheduling OpenCL applications,
including the new feature extractor for OpenCL compute kernels2

3. Section 5.3 presents the evaulation of our scheduling techniques

5.1 Design

While we switched focus from OpenMP to OpenCL, the main task remained – we wanted to
address the problem of heterogeneous scheduling of compute kernels. However, there were
several changes in direction:

1. With OpenMP applications, we wanted to attack the problem of scheduling in the
midst of changing system workload. Incorporating external workload into the machine-
learning model showed good initial results but was somewhat superficial. We had
doubts as to whether this approach could be applied universally and in a scalable
fashion. We decided the external workload problem should be analyzed separately
from determining the efficiency of a compute kernel on a given architecture.

2In this chapter compute kernel is used interchangeably with OpenCL kernel functions, denoted by the
kernel function qualifier. Additionally, we use work item and thread interchangeably.

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 59

2. Previous scheduling approaches, including our own, use machine learning to generate
models for systems that contain only 2 architectures (generally a CPU and a GPU). We
wanted to test the accuracy of our scheduling approach in systems with 3 architectures,
and systems where the architectures are similar. For example, we wanted to test a
system with two throughput-oriented architectures from different vendors.

3. Previous scheduling approaches generate models on a per-system basis, meaning the
heavy training & model generation process for the scheduling model must be repeated
for every new combination of processors in a system (which is especially problem-
atic given the proliferation of highly heterogeneous embedded systems, such as smart-
phones). We sought to generate a single model for all possible systems, making the
training & model generation phase a true “at-the-factory” cost.

We decided to put the external workload aspect of scheduling in the background as it re-
quires its own thorough design and analysis. Focusing on the latter two goals, we needed a
means for specifying architectures to the machine learning model, making it generic for all
architectures. We arrived at the idea of combining both software and hardware features into
the machine learning model so that a given compute kernel (characterized by compute kernel
features) could be evaluated against a given processor (characterized by hardware features)
by the produced machine-learning model. Previous approaches did not incorporate hardware
features into the model, as models were generated per system and hardware features did not
change.

We needed a way to characterize the hardware in the same fashion as the compute kernels.
Thoman et al. developed uCLbench, a set of microbenchmarks that characterize various
aspects of OpenCL implementations & their associated architectures [55]. We leveraged this
set of microbenchmarks (and added several of our own) to generate a list of hardware features
for each architecture that could be fed into the machine learning model. These hardware
features are are discussed in more detail in 5.2.3. It should be noted that while the inputs &
outputs of the machine-learning model changed, we still used ANNs as our model of choice.
The training phase was almost identical (minus the varying levels of external workload)
and the testing phase involved leave-one-out cross validation over all applications and all
architectures. The scheduler from section 4.2.3 could be reused with almost no modification
– the OpenCL scheduling models were swapped in place of the OpenMP ones.

This switch to OpenCL slightly changed the scheduling semantics. Instead of scheduling on
a per-kernel basis, scheduling was performed on a per-benchmark basis due to the fact that
these benchmarks were written as self-contained OpenCL applications ready for execution
on a single device and would require significant refactoring to be scheduled on a per-kernel
basis. Scheduling on a per-benchmark basis meant that features used for machine learning
no longer corresponded to a single compute kernel within the application, but instead corre-
sponded to all compute kernels within the application (essentially, the sum of all features of
all compute kernels within an application). However, applications still followed the copro-
cessor execution model, where scheduling was performed at the partition boundary (i.e. the

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 60

start of the application), and the entire benchmark was the partition. Because the bench-
marks consisted of full OpenCL applications and did not require any refactoring, most of
the problems mentioned in the introduction to this chapter were eliminated:

• No tracking of data locations and sizes was required (the benchmarks contained all
required information) and scheduling happened once per application instead of once per
kernel. This eliminated a lot of the overhead experienced by short-lived applications.

• Data was transferred to and from a device only when necessary. If the benchmark
contains multiple compute kernels that operate on the same data, the benchmarks
were written to let the data stay on the device between compute kernel executions.

• The applications sent only the required data to the specified device as opposed to
always data transferring data in its entirety, even when only a subset is required.

• Finally, because these applications were written using OpenCL, a functionally portable
parallel programming model, all refactoring and programming model translation issues
were avoided. Note that we chose to drop support for the TILEncore-Gx36 because of
its disappointing performance, noted in section 4.3.

The only overheads carried over from the previous approach were those required for schedul-
ing (IPC & machine learning analysis), and even those were reduced by scheduling on a
per-application rather than a per-kernel basis.

Another set of tools was developed in order to perform scheduling for OpenCL applications,
including an OpenCL runtime support library (5.2.1) and another feature extractor built
on top of Clang/LLVM (5.2.2). We switched to a heuristic-based approach rather than a
profiling-based approach to scale features in the new implementation, because as mentioned
in section 4.1 using profiling information is in general non-portable. The feature extractor
is meant to gather trends in compute kernel execution rather than exact operation counts;
this approach sufficed for our needs.

5.2 Implementation

Most of the implementation details for OpenCL applications involved hooking the appli-
cations into the client-side scheduling library (5.2.1), creating a new feature extractor for
OpenCL compute kernels (5.2.2) and generating hardware features with the uCLbench mi-
crobenchmarks (5.2.3). There were very few changes to the scheduler & machine learning
process (5.2.4).

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 61

5.2.1 OpenCL Runtime Support Library

The OpenCL runtime support library was developed as a means for providing naming consis-
tency between the application and scheduler. It provided a structured approach to accessing
devices in the system, based on how they are queried at runtime. OpenCL specifies a hi-
erarchy of resources in the system to enable support for a variety of devices. Vendors of
compute resources provide platforms that correspond to that vendor’s OpenCL implementa-
tion; examples include the AMD Accelerated Parallel Processing (APP) SDK [16] for CPUs
& AMD GPUs, the CUDA SDK [47] for NVidia GPUs, and the Intel OpenCL SDK [30]
for Intel CPUs. The platforms provide OpenCL implementations for devices, including a
compiler and implementations of the OpenCL API. Devices represent the actual processors
in the system and are supported by one or more platforms. For example, Intel CPUs can use
either the AMD APP SDK or the Intel OpenCL SDK for their OpenCL implementation.

Listing 5.1 shows an example of using the support library & scheduling API (note that the
cl runtime & cl exec objects are part of the support library and not the OpenCL API). To
query the system for platforms and devices, applications normally use the clGetPlatformIDs
and clGetDeviceIDs calls. The runtime support library structures access to devices through
platform and device numbers by the order in which they are returned from these calls. For
example, our evaluation machine “bob” contains three compute devices – 4 AMD Opteron
6376 CPUs (exposed as a single device), an NVidia GTX Titan GPU and an AMD Radeon
R290x GPU. A call to clGetPlatformIDs returns two platform IDs – the CUDA SDK
(platform 0) and the AMD APP SDK (platform 1). Calling clGetDeviceIDs with platform
0 returns one device – the GTX Titan. Calling clGetDeviceIDs with platform 1 returns two
devices – the Radeon R290x and the Opteron CPUs. Therefore, if an application wanted to
get a compute context and command queue for the Radeon R290x, the application would
call get device(rt, 1, 0, 0).

In listing 5.1, the cl runtime object is a handle that contains OpenCL information queried
from the system while the cl exec object contains fields for the platform, device and number
of work units in order to succinctly specify an execution environment for a compute kernel.
The application starts by initializing the runtime handle by calling new ocl runtime. It
proceeds to do any other sort of initialization required before beginning device setup. In
order to schedule, the application first initializes a cl kernel features struct with features
from the feature extractor (run on the compute kernel source). Then, it calls the client-side
scheduling library using clSchedule to interact with the scheduling daemon, which returns
a execution environment in a cl exec struct. The application uses the individual fields of
the struct to initialize the environment – the call to get context by platform asks the
library to construct a context and the call to get device asks the library to return a device
ID. For devices that support device fission (an extension in OpenCL 1.1 and a part of the
standard in version 1.2), the last argument to get device can be used to specify the number
of compute units out of the total available number of compute units to use. If 0 is specified,
then the maximum number of available compute units in the device is used. After a compute

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 62

/∗ OpenCL runtime suppor t l i b r a r y API ∗/
struct c l runt ime ∗ new oc l runt ime () ;
c l c o n t e x t g e t con t ex t by p l a t f o rm (struct c l runt ime ∗ rt , int plat form) ;
c l d e v i c e i d g e t d e v i c e (struct c l runt ime ∗ rt , int platform , int device ,

int compute units) ;
void d e l e t e o c l r u n t i m e (struct c l runt ime ∗ r t) ;

/∗ Cl ient−s i d e s c h e d u l i n g API ∗/
struct c l e x e c c lSchedu l e (struct c l k e r n e l f e a t u r e s ∗ f e a t u r e s) ;
void c lCleanupExecut ion () ;
/∗ end a l l API ∗/

int main (int argc , char∗∗ argv)
{

struct c l runt ime ∗ r t = new oc l runt ime () ;

. . . (a p p l i c a t i o n i n i t i a l i z a t i o n) . . .

struct c l k e r n e l f e a t u r e s ∗ f e a t s = . . . (ex t rac t ed f e a t u r e s)
struct c l e x e c exec = c lSchedu l e (f e a t s) ;
c l c o n t e x t ctx = ge t con t ex t by p l a t f o rm (rt , exec . p lat form) ;
c l d e v i c e i d dev = g e t d e v i c e (rt , exec . platform , exec . device ,

exec . work uni t s) ;

. . . (compute ke rne l execut ion) . . .

c lCleanupExecut ion () ;

. . . (remaining cleanup) . . .

d e l e t e o c l r u n t i m e (r t) ;
return 0 ;

}

Figure 5.1: Using OpenCL support library & scheduling API

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 63

has finished execution, it notifies the scheduler with a call to clCleanupExecution3. Finally
the application performs any remaining cleanup and frees the runtime handle.

This library is used to maintain naming consistency between the application and the sched-
uler by passing cl exec execution environments. If, for example, the scheduler decides that
an application should run a compute kernel on the GTX Titan, it sends a cl exec struct with
platform 0 and device 0 to the client, which uses the runtime library to get the appropriate
context and command queue.

Listing 5.1 shows the extent of the changes made to applications to enable scheduling. The
only other minor changes enabling profiling when command queues were created and timing
individual OpenCL actions (namely data transfers & kernel executions).

5.2.2 Extracting Features from OpenCL Kernels

A separate feature extractor was developed for OpenCL applications based on Clang/L-
LVM, simply because GCC cannot parse OpenCL kernel code. The feature extractor was
implemented as an opt pass (the LLVM middle-end optimizer) over the LLVM bitcode IR
generated by Clang after optimizations. Rather than utilizing profiling to scale feature
counts, we chose to use static heuristics. There were several reasons for this – first, other
work ([22]) did not use profiling to scale extracted features but managed to obtain ideal map-
pings. Second, the Clang/LLVM toolchain does not have the ability to instrument OpenCL
kernel code to record basic block counts, although other tools such as Intel VTune Ampli-
fier [31], can record edge profiling information (which requires licensing fees and is closed
source). We decided against using VTune Amplifier because Clang/LLVM are part of a free
& open-source toolchain that is easy to obtain, is portable and is pluggable. Finally, as
mentioned in 4.2.2, using profiling information is in general non-portable because profiling
information becomes obsolete for each different invocation of a compute kernel. Although
using a heuristic is potentially innaccurate, it is acceptable as long as it is able to capture
compute kernel trends.

The following heuristics were used to estimate the number of times a given basic block
executed:

1. Each compute kernel was executed by 10,000 separate work items

2. Each loop performed 1,000 iterations

3. Every control flow path through the code executed with equal probability

Consider an excerpt from the sparse matrix-vector multiplication compute kernel from the
OpenDwarfs benchmark suite [18] in listing 5.2. At the beginning, 10,000 work items begin

3This is for future work, when we reconsider external workload when scheduling OpenCL kernels

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 64

k e r n e l void c s r (. . .) {
unsigned int row = g e t g l o b a l i d (0) ;
i f (row < num rows) {

. . .
for (j j = row star t , j j < row end ; j j ++)

sum += Ax[j j] ∗ x [Aj [j j]] ;
y [row] = sum ;

}
}

Figure 5.2: Estimates for basic block counts based on heuristics

execution of the kernel and call get global id, according to rule (1). Then, the first if-
conditional checks to make sure that the current work item is within the bounds of the
multiplication. According to rule (3) above, half of the work-items evaluate the conditional
as true, and half evaluate it as false – thus, 5,000 of the work items enter the body of the
if-conditional, and 5,000 finish execution of the kernel. Those 5,000 threads that enter
the conditional then perform the for-loop initialization and evaluate its condition. Again,
according to rule (3), half branch to the end of the loop, while half enter the loop body.
According to rule (2), each work item that enters the loop executes the loop body 1,000
times, meaning that the body is evaluated a total of 2,500,000 times. Finally, all threads
that entered the if-conditional execute the basic block containing the store to array y.
The features extracted within each of these basic blocks, including the entry block of the
function, the beginning block in the if-conditional, the body of the for-loop and the store
statement after the for-loop, execute 10,000; 5,000; 2,500,000 and 5,000 times, respectively.
This heuristic was used to extract features from all compute kernels in an application.

Table 5.1 lists the features extracted from the OpenCL compute kernels. While many of
these features are similar to before, there are several differences. First, vector operations
are collected for the main types of operations on data (floating-point, integer & bitwise)
since OpenCL supports vector types while traditional C does not (without special compiler
intrinsics). Additionally, memory accesses to the dedicated local memory (local memory
region in OpenCL) are collected, as different architectures handle this memory differently.
Also, conditional branches are collected in addition to unconditional branches.

The last change to the set of features pertain to memory accesses performed by work items
in a single group. Memory accesses by adjacent work items in a work group are considered
coalesced if they can all be serviced by a single load operation; increasing coalescing increases
the effective memory bandwidth of the architecture by batching together several individual
accesses into a single operation. However, uncoalesced accesses are tolerated differently by
different architectures especially in terms of hardware (CPU) vs. software (GPU) caching
and prefetching. Consider the two vector addition kernels in listing 5.3, executed by an

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 65

k e r n e l vectorAdd (
g l o b a l const int ∗a ,
g l o b a l const int ∗b ,
g l o b a l int ∗c ,

int s i z e)
{

int t i d = g e t g l o b a l i d (0) ;
c [t i d] = a [t i d] + b [t i d] ;

}

(a) Coalesced memory accesses

k e r n e l vectorAdd (
g l o b a l const int ∗a ,
g l o b a l const int ∗b ,
g l o b a l int ∗c ,

int s i z e)
{

int t i d = g e t g l o b a l i d (0) ;
int i ;
for (i = 0 ; i < 32 ; i++)

c [t i d ∗ 32 + i] =
a [t i d ∗ 32 + i] +
b [t i d ∗ 32 + i] ;

}

(b) Uncoalesced memory accesses

Figure 5.3: Coalesced memory

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 66

Kernel Feature Description

1 num instructions Number of instructions
2 float ops Number of floating-point math operations
3 vector float ops Number of vector floating-point math opterations
4 int ops Number of integer math operations
5 vector int ops Number of vector integer math operations
6 boolean ops Number of bitwise and boolean operations
7 vector boolean ops Number of vector bitwise and boolean operations
8 load ops Number of memory load operations
9 store ops Number of memory store operations
10 local load ops Number of local-memory load operations
11 local store ops Number of local-memory store operations
12 coa mem ops Number of coalesced memory accesses
13 maybe coa mem ops Number of potentially coalesced memory accesses
14 uncoa mem ops Number of uncoalesced memory accesses
15 func calls Number of function calls
16 intrinsic math ops Number of intrinsic math operations
17 cond branches Number of conditional branches
18 uncond branches Number of unconditional branches
19 work items Number of parallelizable work items
20 memory tx Number of bytes transferred to device
21 memory rx Number of bytes transferred back from device

Table 5.1: Compute kernel features collected from OpenCL applications

NVidia Tesla C2075 GPU. In 5.3a, each work item is responsible for calculating the addition
for a single item in the vector, while in 5.3b, each work item is responsible for calculating
the addition for 32 items in the vector, the size of an individual warp (or cluster of scheduled
threads) on NVidia Fermi architectures [45]. In 5.3a, all work items in a work group access
adjacent memory locations – thread 0 accesses index 0, thread 1 accesses index 1, etc.
Because of this, loads from multiple work items are coalesced into a single load operation4

issued by the memory unit in the Tesla C2075’s streaming multiprocessor (SM); similar
coalescing occurs when storing results. In 5.3b, however, for the first iteration of the for-
loop thread 0 accesses index 0, thread 1 accesses index 32, thread 2 accesses index 64, etc.
Thus, the SM’s memory unit cannot batch those loads together into a single load operation.
The SM now must issue 2 load & 1 store operation per work item rather than for every 12
work items. Additionally, without any caching mechanism the rest of the fetched memory
line is discarded and must be accessed with subsequent memory operations (luckily most

4The memory bus width for the NVidia Tesla C2075 is 384 bits, meaning that it can combine up to 12
32-bit integer memory operations at a time

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 67

(a) Diagram of a coalesced memory access

(b) Diagram of an uncoalesced memory access

Figure 5.4: Diagram of memory access from compute kernels in 5.3

modern architectures, including GPUs, use some form of caching). Figure 5.4 illustrates how
individual threads load data from array “a” in the corresponding kernel code in listing 5.3.
Thus, the patterns in which compute kernels access memory can have a drastic affect on
performance from architecture to architecture, especially because of the “memory wall”
discussed in section 1.1.

Memory coalescing is an implicit feature of compute kernels because the kernel code specifies
the execution of a single work item; it is the runtime compiler’s responsibility to convert the
single work item description into a multi-work item implementation that can be executed
in parallel by the device. In general, threads access input & output data based on their
thread ID; we used this fact to track coalescing within the kernel. The feature extractor
keeps track of a list of values5that are in some way based on a work item’s thread ID (called
thread ID values), starting with calls to get local id or get global id (get group id is
most often used as a common constant offset for all work items in a work group and does
not affect coalescing, according to rule (3) below). The feature extractor tracks how values
initially obtained from calls to these OpenCL built-in functions evolve during execution.
Memory coalescing analysis depends on the stride of an access between adjacent work items.
The initial thread ID values obtained from calls to get local id and get global id have a
stride of 1 – any work items that access memory using a value with stride 1 access adjacent
elements in memory, resulting in perfect coalescing (thread 0 accesses element 0, thread
1 accesses element 1, etc.). Operations that change this stride produce values that affect

5In LLVM nomenclature, a value is any constant or the result of any operation, and can be used in other
operations. Note that a value has no assigned storage since the code is in target-independent form.

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 68

coalescing between adjacent work items. If, for example, threads access memory locations
based on 2 ∗ threadID (i.e. thread 0 accesses location 0, thread 1 accesses location 2, etc.),
then only half as many accesses can be serviced by a single operation and the effective
memory bandwidth is halved. So, the feature extractor tracks how thread ID values and
their associated strides change during kernel execution. The following rules determine how
the access stride changes as various operations are performed on thread ID values:

1. A value that is the result of a call to get local id or get global id has a stride of
1. These values are the initial thread ID values, and all subsequent thread ID values
flow from these values.

2. Any operation that involves a thread ID value and an unknown value (such as the
value stored at some memory location, or some runtime-dependent value) produces an
unknown stride.

3. Addition or subtraction of a constant value and a thread ID value corresponds to an
offset for all work items and does not affect the access stride.

4. Addition or subtraction with a non-constant value results in an unknown stride.

5. Multiplication or division of a constant and a thread ID value scales the stride of that
thread ID value by the constant value. Note that shift-left and shift-right by a constant
value c correspond to multiplying and dividing the stride by 2c, respectively.

6. Multiplication or division with a non-constant value results in an unknown stride.

7. Bitwise operations (and, or, xor) between any value and a thread ID value produces
an unknown stride.

8. Any operation that does not use a thread ID value in one of its operands is considered
orthogonal to memory coalescing analysis and is ignored.

Note that any interaction with a value of unknown stride produces a value of unknown stride
in a “viral” fashion. When the compute kernel actually performs a memory access (either a
load or store in LLVM bitcode IR), the following rules are applied to classify the access as
either coalesced, maybe-coalesced or uncoalesced:

1. If the access stride between adjacent work items is less than or equal to 2, then the
access is considered coalesced

2. If the access stride between adjacent work items is greater than 2, then the access is
considerd uncoalesced

3. If the access stride is unknown, then the access is considered maybe coalesced

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 69

A stride of 2 was chosen as the cutoff point because very few applications exhibit perfect co-
alescing, and compute kernels with an access stride of 2 still exhibit high memory bandwidth
utilization. However when increasing the stride beyond 2, most architectures experience a
dramatic dropoff in terms of memory bandwidth.

Returning to the compute kernel in 5.3a, value tid is initialized by a call to get global id;
according to rule (1), its access stride is 1. The subsequent uses of tid to reference into a, b
and c are all perfectly coalesced, meaning that every memory access in this compute kernel
exhibits perfect coalescing. However, in listing 5.3b, accesses are based on a the thread ID
multiplied by 32, meaning the access stride between adjacent work items is 32 according to
rule (3), but it is also also added to a runtime value i, meaning that the stride is unknown
and therefore considered maybe-coalesced.

In general, accesses that are based on constants are either coalesced or uncoalesced, while
everything else depends on runtime values and is considered maybe-coalesced.

5.2.3 Extracting Hardware Features

As mentioned in section 5.1, we used uCLbench, a set of OpenCL microbenchmarks, to gen-
erate hardware features for each architecture. The benchmark suite generates the following
information per architecture:

Arithmetic Throughput

This benchmark tests the throughput of various types of arithmetic operations (add, sub-
tract, multiply, divide) and built-in math functions (exp, log, sqr, sqrt, cos, sin and tan).
It tests these operations using both scalar and OpenCL vector types for vectors of length 2,
4, 8 and 16. The results (in millions of operations per second, MOp/s) are the throughput
for an individual work item per compute unit and for the maximum number of work-items
per work group for all compute units a given architecture. We used the latter number, as
it corresponded to the maximum throughput of the entire device (which corresponds more
closely to how benchmarks execute); rarely do applications use only a single work-item per
compute device. Higher throughput for each operation means the architecture can execute
compute kernels more quickly.

Branch Penalty

This benchmark tests the ability of the architecture to handle control flow divergence. This
varies significantly between architectures – CPUs have advanced branch prediction hardware6

6Depending on the OpenCL compiler, the compute kernel may be converted to a SIMD-format for CPUs
in order to handle multiple work items, limiting the ability of the branch predictor and forcing refactoring

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 70

while GPUs generally favor simpler cores and use some form of predication or stalling to
handle divergence. The compute kernel for the benchmark contains 128 branches that can be
taken by work items; which branches are taken per work item depends on values computed on
the host. The host precomputes these values and launches the compute kernel with a single
work group containing 128 work items. The amount of branching experienced at runtime
varies based on the number of individual branches in the kernel taken by the work items (up
to 128 separate branches) and the width of those branches, which corresponds to the number
of work items that execute the same branch (i.e. if the branch width is 4, work items 0, 1,
2 and 3 execute branch 0, work items 4, 5, 6 and 7 execute branch 1, etc). The benchmark
reports amount of time taken to finish executing the compute kernel in nanoseconds; the
lower the time, the better the architecture is able to handle divergence.

Buffer Bandwidth

This benchmark tests the data transfer bandwidth from host to device, from device to device
and from device to host in megabytes per second (MB/s). This quantifies the bandwidth
over the PCIe bus (for coprocessors) as well as the for main memory in the system7. This is
important for applications that have different compute-to-transfer ratios; although a given
kernel may be faster on a specific device, the data transfer overheads may outweigh any
benefits. The higher the buffer bandwidth, the less of an impact data transfers between host
and device have on performance.

Kernel Overheads

This benchmark tests the various OpenCL runtime overheads associated with kernel compi-
lation & invocation. It varies both the number of arguments (from 4 to 32) and the number
of lines of source code (from 24 to 3000) for a given compute kernel, then measures the
compilation & invocation times in nanoseconds. The lower the kernel overheads, the less
time is spent preparing for execution, meaning less of a performance penalty.

Memory Latency

This benchmark tests the access latency to different OpenCL memory regions (global, con-
stant & local memory) in a sequential or cache-line-stepping pattern. It reports the access
latency in nanoseconds for the combinations of these parameters. The less access latency,

to enable predication within the kernel
7One semantic peculularity of OpenCL on CPUs is that unless explicitly disabled during construction,

OpenCL device memory buffers live in separate locations from host memory buffers. Therefore, data is
actually copied between different locations in main memory when using the host CPUs as a device

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 71

the more quickly data can be moved between different regions of memory and the more time
can be spent performing operations on that data.

Additionally, we augmented the suite of microbenchmarks to include memory coalescing
features and other static architecture features.

Memory Coalescing

This benchmark tests the streaming memory bandwidth of accesses with varying strides (as
mentioned in section 5.2.2) between consecutive work items. It tests accesses with varying
strides to global memory (strides of 1 to 256 in powers of 2), constant memory (strides of
1 to 256 in powers of 2) and to local memory (strides of 1 to 16 in powers of two). It tests
both reads and writes for the global & local memory spaces, but only reads for the constant
memory space. It reports the results in gigabytes per second (GB/s) for each combination of
parameters. The higher the bandwidth, the better the architecture is able to handle various
types of access patterns to memory, increasing compute kernel performance.

Static Architecture Features

This benchmark simply prints out some simple features of each architecture as obtained
from the OpenCL runtime. These features include device type (CPU, GPU, accelerator
or custom), number of compute units, clock frequency and sizes of the individual OpenCL
memory regions on the device.

These features correspond to the extracted kernel features, in the hopes that the machine
learning model could correlate the abilities of the hardware with the operations performed
by the compute kernel. Each of these benchmarks were run for every architecture to gather
hardware features, which were paired with compute kernel features to form the basis for the
training & testing data.

5.2.4 Changes to the Scheduler & Machine Learning

There were very few changes to be made to the scheduler in order to adapt it for scheduling of
OpenCL applications. First, the messages passed between the client and server were modified
slightly to allow passing the new OpenCL features (inside a struct cl kernel feature

object) to the server and an execution environment (inside a struct cl exec object) back
to the client. Additionally, any notion of external workload was removed – the scheduler
maintained no information about which applications were running on which devices, although
it could given that the applications notified the scheduler when they had finished execution.
As mentioned before, this was purely future-proofing the work. Finally, the scheduler loaded
the models trained for scheduling OpenCL compute kernels rather than the ones trained for

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 72

OpenMP compute kernels. The rest of the scheduler, including the IPC wrapper layer which
formed the basis of communication between application and scheduler, was untouched.

The machine learning process was also largely identical. We implemented decision trees in
order to test our approach against a competitor, but this was handled internally by OpenCV.
The process of generating training data was much shorter by avoiding having to run an
application with various levels of external workload. The input training data included the
updated set of kernel features from the new feature extractor as well as the hardware features
from uCLbench; the external workload features were removed. Finally, the generated model
produced a single output rather than outputs for all architectures in the system.

5.3 Results

For our evaluation of our unified prediction model, we tested the speedups obtained from
the scheduling decisions made by our model versus the speedups obtained using the state-
of-the-art technique presented in [22]. The speedups in the graphs correspond only to the
OpenCL-specific portions of applications (data transfers & kernel executions), as we cannot
affect the running times of other parts of applications. In this evaluation, we tested our
prediction model on eight separate architectures (distributed between three systems) and
34 benchmarks from the OpenDwarfs, Rodinia and Parboil benchmark suites. All speedups
presented are relative to the time it took the CPU in the system to execute the OpenCL
portions of the code, i.e. a speedup of 1 indicates the system’s CPU was chosen, while
other values indicate another architecture was chosen. The results are presented for each
system and broken down into graphs corresponding to the individual benchmark suites for
readability.

As presented in [22], a decision tree model was generated per-system using the features
in table 5.2. These features consist of various combinations of several of the raw features
listed in table 5.1. The decision trees were evaluated using the leave-one-out cross validation
technique applied to our models.

Kernel Feature Description
1 transfer/(comp+mem) communication/computation ratio
2 coalesced/mem % coalesced memory accesses
3 (localmem/mem)*avgws ratio of local/global memory accesses multiplied by the

average # of work items/kernel
4 comp/mem computation/memory access ratio

Table 5.2: Competitor features

As previously mentioned, we used leave-one-out cross validation to evaluate our models.

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 73

However because we developed a unified model, we performed leave-one-out cross validation
per-system and per-benchmark. In other words, we the tested the ability of the model
to predict the relative efficiency of an unseen application on a system containing unseen
architectures. For example, when testing the models for astar on “bob”, we generated a
model with training data from the 33 external applications on the five architectures not
present in “bob”.

5.3.1 General Overheads

Because the scheduler implementation was re-used as described in section 4.2.3, the same
scheduling overheads presented in section 4.3.1 remain for these models. However the model
evaluation costs, shown in table 5.3, were slightly different8:

Value Time (µs)
Machine Learning Evaluation (competitor) 1.3

Machine Learning Evaluation (unified model) 14.5

Table 5.3: Model evaluation overheads

Decision trees are classifiers, in that the predictions output from the tree fall into one of
several classes (in this case, architectures with highest predicted relative efficiency). As
indicated by table 5.3, evaluation using decision trees requires much less work than artificial
neural networks because a single factor (e.g. number of loads) is evaluated at a node.
Depending on the value of that factor, either the left or right child of the current node is
taken, until a leaf node is reached. Each leaf node corresponds to prediction of a certain
class, i.e. making an architecture prediction. The generated decisions trees had on average
five levels, meaning that evaluation for a given set of input features was very efficient. For
our unified model, evaluation was much slower (although still fast relative to kernel execution
times). The unified model required more evaluation time due to the added hardware features
used to make the model portable.

For the rest of the section, we will denote the competitor as the technique presented in [22].

5.3.2 Setup 1

The first setup consisted of the architectures listed in table 5.4. This setup is similar to
many desktop systems, containing a high-end desktop-grade multicore CPU (Intel’s Haswell
microarchitecture) and a discrete gaming GPU (NVidia’s Fermi microarchitecture). This
setup is similar to the setups tested in the competitor’s work, where the system combines

8These times were obtained on the Core i7-4770

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 74

Core i7-4770 GTX 560 Ti

Vendor Intel NVidia
of Cores (Logical) 4 (8) 448

Frequency (GHz) 3.4 1.46
Core Design Superscalar/OoO SIMT

Memory (GB) 16 1.2
Connection N/A PCIe 3.0 x16

Operating System Ubuntu Desktop 12.04 LTS

Table 5.4: Architectures in evaluation system “hulk”

latency- and throughput-based processors. Making decisions for this setup was somewhat
easier than other cases, as there are only two very different architectures. It should be noted
that the GPU in this system was connected to the CPU using PCIe version 3.0, meaning
that it benefitted from higher data transfer bandwidth than the accelerators in other systems
(which used PCIe version 2.0).

Figure 5.5: OpenDwarfs benchmarks on “hulk”

Figures 5.5, 5.6 and 5.7 show the speedups obtained over the Core i7-4770 by the benchmarks
in the OpenDwarfs, Parboil and Rodinia benchmark suites, respectively (overall results per

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 75

Figure 5.6: Parboil benchmarks on “hulk”

Figure 5.7: Rodinia benchmarks on “hulk”

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 76

system are listed in figure 5.14). For each benchmark, there are three bars – one bar for each
of the competitor’s model, our model and an oracle (that predicts the correct architecture
for every benchmark). Both models mispredict benchmarks with high GPU speedups – the
competitor mispredicts gem while our model mispredicts streamcluster. Interestingly, both
models are able to predict the correct architecture for all Parboil benchmarks. In general,
however, both models produce overall speedups close to the oracle, as shown in figure 5.14.
The competitor’s model produces a speedup of 4.36x over a CPU-only solution, while our
model produces a speedup of 4.46x over the baseline. The maximum speedup obtainable
with an oracle is 5.2x.

5.3.3 Setup 2

Opteron 6376 (x4) GeForce GTX Titan Radeon R9 290X

Vendor AMD NVidia AMD
of Cores 64 2688 2816
Frequency 2.3 GHz 837 MHz 1 GHz

Core Design Superscalar/OoO SIMT SIMD
Memory (GB) 128 6 4

Connection N/A PCIe 2.0 x16 PCIe 2.0 x16
Operating System Ubuntu Server 12.04 LTS

Table 5.5: Architectures in evaluation system “bob”

The second setup consisted of an interesting mix of three architectures – a highly-multicore
set of CPUs and two high-end gaming GPUs (which rival server-grade GPUs). Architectural
details are listed in table 5.5. The system contained 4 of the 16-core Opteron 6376 CPUs
used for evaluation in section 4.3. It additionally used an NVidia GeForce GTX Titan and
an AMD Radeon R9 290X, two GPUs competing for the high-end gaming market. We used
this setup to test the ability of the model to distinguish fine-grained architectural details
(instead of a simple latency vs. throughput prediction).

Figures 5.8, 5.9 and 5.10 show the speedups obtained using the generated models. It is easy
to see that prediction accuracies dropped significantly from “hulk” to “bob”; however, a
misprediction in this scenario might still provide speedups, as the Radeon and Titan tend to
excel at the same sorts of applications. For many of the benchmarks where the two models
disagree (e.g. all Parboil benchmarks except tpacf), the two models predicted one of the
two GPUs. In general, the Titan was the faster of the two GPU because of data transfer
latency between the host and device (discussed further in more detail below). Our unified
model seemed to be able to pick up on this fact moreso than the competitor’s model as
our model predicted the Radeon fewer times than the Titan. Both models mispredicted
myocyte, resulting in drastic slowdowns for the benchmark. This is due to the benchmark

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 77

Figure 5.8: OpenDwarfs benchmarks on “bob’

using only four work items per kernel invocation, a characteristic not indicated in either
feature set. Adding a feature that explicitly states the average number of work items per
kernel invocation would help alleviate this misprediction. Overall, both models were able to
obtain about 75%-80% of the possible speedup. The competitor obtained an overall speedup
of 12.83x while our model obtained a speedup of 12.93x, out of a possible 16.2x speedup.

5.3.4 Setup 3

The third system, named “whitewhale”, contained the architectures listed in table 5.6. This
setup was interesting in that it contained a spectrum of devices – it contained traditional
CPUs, a server-grade GPU and a manycore coprocessor that represents an attempt to com-
bine the best features of the other two.

Figures 5.11, 5.12 and 5.13 show the speedups obtained using the two models on “white-
whale”. On this sytem, there was less obtainable speedup compared to the other two systems.
This is due to the increased performance of the Xeon CPUs relative to the Core i7-4770 and
AMD Opteron 6376. Although there are many more CPU cores in the Opteron CPUs, the
Xeon cores are better able to hide memory latencies than the Opteron cores because they
use simultaneous multithreading to quickly swap between thread contexts when stalled on
memory accesses. Additionally there is less of a perfomance gap between the CPU and GPU

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 78

Figure 5.9: Parboil benchmarks on “bob”

Figure 5.10: Rodinia benchmarks on “bob”

in this system because the Xeon CPUs are Intel’s newest Haswell micro-architecture while
the Tesla contains the older Fermi microarchitecture. For the OpenDwarfs benchmarks, both

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 79

Xeon E5-2695 (x2) Xeon Phi 3120A Tesla C2075

Vendor Intel Intel NVidia
of Cores (Logical) 24 (48) 57 (228) 448

Frequency (GHz) 2.4 1.1 1.15
Core Design Superscalar/OoO Superscalar/In-order SIMT

Memory (GB) 64 6 6
Connection N/A PCIe 2.0 x16 PCIe 2.0 x16

Operating System CentOS 6.5

Table 5.6: Architectures in evaluation system “whitewhale”

Figure 5.11: OpenDwarfs benchmarks on “whitewhale”

models predict architectures that produce speedups relatively close to the maximum possible
speedup.

The unified model mispredicts fft, due to the relatively small number of work items used
per kernel invocation (1024 and 512, for the two kernels). It schedules fft onto the Xeon Phi
instead of the Tesla, resulting in bad performance degradation. The fft kernels perform a
large number of floating-point operations. Based on the hardware features from uCLbench,
the Xeon Phi is the fastest at arithmetic operations, reaching nearly a teraflop of floating-
point performance. However, this feature is generated using a large number of work items.
The Intel OpenCL SDK implicitly auto-vectorizes the work items in a work group so that 16

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 80

Figure 5.12: Parboil benchmarks on “whitewhale”

Figure 5.13: Rodinia benchmarks on “whitewhale”

work items of a work group are executed by a single thread on the device [27]. The kernels

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 81

do not provide enough work items to reach the hardware-multithreading limits of the device,
meaning that the obtained arithmetic throughput is greatly reduced. We could add features
that indicate the amount of work per work item, similarly to the competitor’s feature set,
to alleviate this problem.

The unified model also mispredicts cutcp, scheduling its kernels onto the Xeon Phi when
they should be scheduled onto the Tesla. This is due to the extensive use of local memory
and barriers within the cutcp kernel. As mentioned in the OpenCL optimization guide for
the Xeon Phi, there is no hardware support for barriers in the Xeon Phi (while NVidia
GPUs contain special hardware for barriers) [27]. Additionally, there is no local memory
for the Xeon Phi – it is emulated in global memory and causes performance degredation.
The kernels in cutcp use barriers extensively, constantly flushing data to the emulated local
memory and hammering the weaknesses of the Xeon Phi. We could better inform our model
of this problem by including features for synchronization APIs in our feature set.

The third setup is the only setup where the unified model fails to outperform the competitor’s
model. The unified model obtains a speedup of 1.49x, while the competitor obtains a speedup
of 1.92x out of a possible 2.42x. This is due to the failure of the feature set to describe the
architectural characteristics of the Xeon Phi relative to the Tesla.

5.3.5 Discussion

Figure 5.14 shows the overall speedups obtained by the two models relative to the possible
speedup (represented by the oracle). In general, we believe our feature set better quanti-
fies the OpenCL applications than the competitor’s feature set, as we are able to obtain
comparable speedups to the competitor while evaluating the model’s predictions on unseen
benchmarks and unseen architectures (while the competitor only make predictions for unseen
benchmarks). Any speedup over the competitor is significant, as the competitor’s predictions
are based on models generated from hours worth of training data on a particular system,
giving those models a chance to learn implicit architectural details. Alternatively, our model
makes predictions for the same system without any training data, which also explains why
our models fail to learn some of the minute architectural details of the Xeon Phi, making
the predictions less accurate on “whitewhale”.

There were some perfomance quirks of several architectures in the system:

1. The Radeon has a comparable buffer transfer bandwidth (i.e. host-to-device or device-
host transfers) to the Titan, but has a significantly higher transfer latency (or at
least transfer startup cost). When transferring four bytes (the smallest size allowed
by the buffer bandwidth benchmark) between the host and device 100,000 times, the
Titan had a latency of 2.5µs per transfer, whereas the Radeon had a latency of
31.8µs per transfer. This manifests itself negatively in applications that have small
runtimes (meaning data transfers take up a larger percentage of execution time, such

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 82

Figure 5.14: Overall speedups per system

as bfs), whereas applications that have large runtimes see an overall benefit to using
the Radeon, as it has a higher overall arithmetic throughput (such as gem).

2. Although the Intel Xeon Phi’s peak memory throughput on the device is 240 GB/s, our
hardware benchmarking could only reach a maximum of 29.88 GB/s. This indicates
that the OpenCL implementation allocates memory to consecutive memory controllers
out of the 12 memory controllers on-chip, limiting the overall available memory band-
width. Because OpenCL has no means of specifying memory in NUMA architectures,
the memory bandwidth of OpenCL kernels is inherently limited by the OpenCL im-
plementation. Other architectures reached near-theoretical memory bandwidth in our
testing.

While both models are able to obtain a majority of the possible speedups, we believe several
additions would further improve our technique. We predict that using more systems would
improve the prediction accuracy of the unified model as it would give the model more in-
formation on which to train – it is hard to train any model of sufficient complexity using
only 8 datapoints. Additionally, we believe the added features from above (buffer transfer
latency, computation per work-item and synchronization) would increase the accuracy of
the model and improve some of the main sources of performance degredation. Finally, we
believe introducing some form of profile-guided scaling (i.e. profiling the kernel would to get

Robert F. Lyerly Chapter 5: Scheduling OpenCL Applications 83

accurate counts of basic block execution) would greatly improve the prediction accuracy of
the model.

Chapter 6

Conclusion

In this thesis, we have shown that when scheduled correctly, utilizing parallelism & hetero-
geneity for high-performance applications can lead to drastic performance improvements.
Making this scheduling decision is a non-trivial problem, especially with the proliferation of
architectures that target a variety of design points. Mapping applications to architectures
requires some form of quantitative characterization and decision making. We developed sev-
eral feature extractors for OpenMP & OpenCL compute kernels, and used these extracted
features to schedule compute kernels onto different architectures in a system using trained
machine learning models. Additionally we demonstrated the ability of these models to adapt
the scheduling decision in the presence of varying external workload on the system.

6.1 Contributions

This work consists of the following contributions:

1. We developed a partitioner, which automatically refactored applications to
be scheduled and executed on heterogeneous architectures. The partitioner
analyzed the code to determine on which architectures a compute kernel could execute,
and then refactored compute kernels into a set of partition boundaries and device-
specific partitions to execute the compute kernel. The scheduling decision was made
by an external scheduling daemon, callable from a client-side API. The partitioner
additionally handled all data transfer to and from the device automatically, with the
help of a runtime memory management library.

2. We developed feature extractors to extract features from both OpenMP
& OpenCL compute kernels. These extractors, built on top of GCC and LLVM,
extracted compute-kernel features such as the number and types of operations executed

84

Robert F. Lyerly Chapter 6: Conclusion 85

by the compute kernel, in addition to higher-level pattern features such as cyclomatic
complexity and memory access patterns.

3. We developed a central scheduling daemon to make scheduling decisions for
individual applications using trained machine learning models. Applications
sent the scheduler a set of compute kernel features using IPC, which in combination
with other features (external workload features for OpenMP applications and hard-
ware features for OpenCL applications) were used to make a scheduling decision. The
logic for the scheduling decision was implemented using an ANN, trained using super-
vised machine learning. The generated machine-learning model was generated on a
per-system basis for OpenMP applications, but extended into a unified model for all
architectures for OpenCL appliations. The scheduling decision was subsequently re-
turned to the applications, which executed the device-specific implementation specified
by the scheduler.

4. Using this framework, we were able to accurately predict the relative effi-
ciency of a compute kernel on an architecture, and were able to adjust this
prediction in the presence of external workload. For OpenMP applications,
when using a workload-aware model we were able to see a 4x speedup over using a
static machine learning model. For OpenCL applications, we generated models that
were !!TODO!!% more accurate than state-of-the-art models, and incorporated hard-
ware features that made the model truly portable for previously unseen architectures
and systems.

5. We additionally discovered the poor performance of the Linux scheduler
when oversubscribing CPU threads to cores. Because of the enormous number
of context switches caused by an overload of CPU threads, compute kernels should
be scheduled onto CPU cores using some form of spatial scheduling to eliminate these
conflicts.

Chapter 7

Future Work

Although we demonstrated several strong research contributions, there are further imple-
mentation details that can be addressed, in addition to solidifying the research.

7.1 Partitioner

As mentioned in section 4.2.1, the partitioner could be made more robust and several usability
features could be added:

• The partitioner as its currently structured depends on the programmer to annotate
the source code with OpenMP pragmas, directing the partitioner to potential compute
kernels. Ideally the partitioner could take arbitrary C source code and determine where
the compute kernels were inside to the code, meaning that refactor an application from
being single threaded to being multi-threaded and able to be executed on heterogeneous
architectures.

• Several of the restrictions enforced in the “Find Compatible Architecture” analysis pass
could be lifted by implementating or utilizing a structure serialization library that can
handle arbitrary-dimension pointers in addition to more complex abstract data types,
such as lists or trees. Although this might be to the detriment of performance, it would
allow usability on a wider variety of applications.

• ROSE has limited support for preprocessor macro/pragma handling due to using a
discrete frontend that lowers the parse tree into an AST for use by ROSE; this requires
the programmer to sometimes manually add #include directives for the memory man-
agement and the client-side scheduler library (additionally, the programmer must man-
ually specify which device-specific partitions must be generated via a popcorn pragma,
a step that could be removed).

86

Robert F. Lyerly Chapter 7: Future Work 87

• The partitioner currently supports a CUDA backend (which essentially copies the com-
pute kernel into a separate file for OpenMP-to-CUDA refactoring) and an MPI back-
end. Support could be added for other backends, such as OpenCL.

• The partitioner currently handles all data movement automatically. Some of the prob-
lems introduced by this process could be eliminated by user-specified data movement.
Additionally, some form of lazy data movement could be implemented to eliminate
redundant data transfers so that data is only moved when absolutely necessary.

• The partitioner currently schedules at every compute-kernel boundary. This should be
a configurable parameter to allow adjusting the scheduling granularity and frequency
to mitigate some of those scheduling costs.

• The partitioner should be tested on larger applications to further expose issues that
did not arise with the smaller benchmark applications.

7.2 Scheduling with External Workload

Although we were able to generate a system-specific model to adapt scheduling decisions
to external workload, this solution is not portable to other systems. In addition, it could
be extended to handle a wider variety of situations and to actively counteract scheduler
thrashing introduced by oversubscribing cores by using spatial scheduling:

• Some of the related work utilized other scheduling techniques, such as actual task
queues used to regulate compute kernel execution on individual devices (instead of
the simple counters utilized by our scheduler). This would avoid the problem of over-
subscribing individual devices, especially devices where applications are able to run
concurrently. With these task queues, further load balancing techniques could be ap-
plied (such as work stealing).

• Another possible approach to spatial scheduling would be to utilize OpenCL device
fission, a feature introduced as an extension to OpenCL 1.1 and integrated into the
core specification in version 1.2, allows the application to create sub-devices that con-
tain a subset of the compute units in a device. This could be used by the scheduler
to allocate non-overlapping sets of compute units to applications to avoid scheduler
conflicts (e.g. give applications A and B four CPUs of an eight CPU processor). We
initially considered this idea for the OpenCL work, but this feature is unfortunately
only supported on CPUs at this point.

• Applications that are too small to benefit from parallelization or heterogeneity should
be filtered out by analysis and removed from the scheduling process.

Robert F. Lyerly Chapter 7: Future Work 88

7.3 Feature Selection/Extraction

Currently our set of features consists of a hand-picked characteristics that we believe identify
how compute kernels map to the underlying architecture. Other machine learning work ([37])
has shown, however, that seemingly strange features may allow machine learning models to
make better predictions. Implementing a feature grammar and subsequently utilizing some
algorithm (such as genetic programming) to automatically generate the feature set may lead
to better predictions, or predictions for non-traditional architectures not evaluated in this
work (such as FPGAs or DSPs).

Additionally, the static heuristics used by the feature extractor in section 5.2.2 to estimate
basic block counts do not and cannot accurately predict runtime performance of the kernel.
Therefore, re-introducing profiling-scaled features would significantly improve our prediction
accuracy for OpenCL benchmarks. Additionally, some form of hybrid approach could be
used to make the scaling of features more portable – a single work group from a kernel
invocation could be executed to generate a scaling factor which could subsequently be used
to make the scheduling decision.

7.4 Further Evaluation

While we have evaluated the unified model on server and desktop-grade architectures, it
would be beneficial to also evaluate the model on embedded and SoC architectures (many of
which leverage higher levels of integrated heterogeneity for increased performance). Having
a single unified model for architectures on a broad spectrum of size and design increases the
portability of the model to a wide variety of settings.

Additionally, we would like to evaluate implementations of OpenMP 4.0 as mature and robust
implementations become available. The performance of the generated device code largely
depends on the ability of the compiler to generate kernels that map well to the underlying
device architecture. This can have drastic effects on the mapping decision of the scheduler.

Bibliography

[1] Intel previews future ’knights landing’ xeon phi x86 copro-
cessor with integrated memory - the register, June 2013.
http://www.theregister.co.uk/2013/06/17/intel knights landing xeon phi fabric interconnects/.

[2] Samsung teams up with mozilla to build a browser engine for multicore
machines — ars technica, April 2013. http://arstechnica.com/information-
technology/2013/04/samsung-teams-up-with-mozilla-to-build-browser-engine-for-
multicore-machines/.

[3] Top 500 list – november 2013 — top500 supercompute sites, November 2013.
http://www.top500.org/list/2013/11/.

[4] Qualcomm announces the ultimate connected computing next-
generation snapdragon 810 and 808 processors, April 2014.
http://www.qualcomm.com/media/releases/2014/04/07/qualcomm-announces-
ultimate-connected-computing-next-generation-snapdragon.

[5] AMD. Amd graphics cores next (gcn) architecture. Technical report, AMD, 2012.
http://www.amd.com/Documents/GCN Architecture whitepaper.pdf.

[6] AMD. Software optimization guide for amd family
15h processors. Technical report, AMD, January 2012.
http://developer.amd.com/wordpress/media/2012/03/47414 15h sw opt guide.pdf.

[7] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.
Starpu: a unified platform for task scheduling on heterogeneous multicore architectures.
Concurrency and Computation: Practice and Experience, 23(2):187–198, 2011.

[8] David H Bailey, Eric Barszcz, John T Barton, David S Browning, Russell L Carter,
Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A Lasinski, Rob S
Schreiber, et al. The nas parallel benchmarks. International Journal of High Perfor-
mance Computing Applications, 5(3):63–73, 1991.

[9] Mateusz Berezecki, Eitan Frachtenberg, Mike Paleczny, and Kenneth Steele. Many-
core key-value store. In Green Computing Conference and Workshops (IGCC), 2011
International, pages 1–8. IEEE, 2011.

89

Robert F. Lyerly Chapter 7: Future Work 90

[10] The OpenMP Architecture Review Board. Openmp.org, April 2014.
http://www.openmp.org.

[11] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-Ha
Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing.
In Workload Characterization, 2009. IISWC 2009. IEEE International Symposium on,
pages 44–54. IEEE, 2009.

[12] Shuai Che, Jeremy W Sheaffer, Michael Boyer, Lukasz G Szafaryn, Liang Wang, and
Kevin Skadron. A characterization of the rodinia benchmark suite with comparison
to contemporary cmp workloads. In Workload Characterization (IISWC), 2010 IEEE
International Symposium on, pages 1–11. IEEE, 2010.

[13] George Chrysos. Intel(r) xeon phi(tm) coprocessor – the architecture. Technical re-
port, Intel, 2012. http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-
codename-knights-corner.

[14] GNU Compiler Collection. Gimple - gnu compiler collection (gcc) internals, April 2014.
http://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html.

[15] GNU Compiler Collection. Gomp - an openmp implementation for gcc - gnu project -
free software foundation (fsf), April 2014. http://gcc.gnu.org/projects/gomp/.

[16] Advanced Micro Devices. App sdk — amd, April 2014.
http://developer.amd.com/tools-and-sdks/heterogeneous-computing/amd-accelerated-
parallel-processing-app-sdk/.

[17] Murali Krishna Emani, Zheng Wang, and Michael FP O’Boyle. Smart, adaptive map-
ping of parallelism in the presence of external workload. In Code Generation and Op-
timization (CGO), 2013 IEEE/ACM International Symposium on, pages 1–10. IEEE,
2013.

[18] Wu-chun Feng, Heshan Lin, Thomas Scogland, and Jing Zhang. Opencl and the 13
dwarfs: a work in progress. In Proceedings of the third joint WOSP/SIPEW interna-
tional conference on Performance Engineering, pages 291–294. ACM, 2012.

[19] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski, Olivier
Temam, Mircea Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric Cour-
tois, et al. Milepost gcc: Machine learning enabled self-tuning compiler. International
Journal of Parallel Programming, 39(3):296–327, 2011.

[20] Dominik Grewe and Michael FP OBoyle. A static task partitioning approach for het-
erogeneous systems using opencl. In Compiler Construction, pages 286–305. Springer,
2011.

Robert F. Lyerly Chapter 7: Future Work 91

[21] Dominik Grewe, Zheng Wang, and Michael FP OBoyle. Opencl task partitioning in the
presence of gpu contention.

[22] Dominik Grewe, Zheng Wang, and Michael FP O’Boyle. Portable mapping of data
parallel programs to opencl for heterogeneous systems. In Code Generation and Op-
timization (CGO), 2013 IEEE/ACM International Symposium on, pages 1–10. IEEE,
2013.

[23] Systems Software Research Group. Popcorn linux, April 2014.
http://www.popcornlinux.org/.

[24] The Khronos Group. Opencl - the open standard for parallel programming of hetero-
geneous systems, April 2014. http://www.khronos.org/opencl/.

[25] The Portland Group. Pgi(r) compilers & tools, April 2014.
http://www.pgroup.com/index.htm.

[26] IBM. Ibm xl c/c++ for aix and linux, v12.1, May 2012. http://www-
01.ibm.com/support/docview.wss?uid=swg27027518&aid=1.

[27] Intel. Opencl design and programming guide for the intel(r) xeon phi(tm) coprocessor.
Technical report.

[28] Intel. Intel open source openmp runtime — intel openmp* runtime, April 2014.
http://www.openmprtl.org/.

[29] Intel. Intel(r) 64 and ia-32 architectures optimization ref-
erence manual. Technical report, Intel, March 2014.
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-
ia-32-architectures-optimization-manual.pdf.

[30] Intel. Intel(r) sdk for opencl(tm) applications xe 2013 r3, April 2014.
https://software.intel.com/en-us/vcsource/tools/opencl-sdk-xe.

[31] Intel. Intel(r) vtune(tm) amplifier xe 2013, April 2014. https://software.intel.com/en-
us/intel-vtune-amplifier-xe.

[32] Vı́ctor J Jiménez, Llúıs Vilanova, Isaac Gelado, Marisa Gil, Grigori Fursin, and Nacho
Navarro. Predictive runtime code scheduling for heterogeneous architectures. In High
Performance Embedded Architectures and Compilers, pages 19–33. Springer, 2009.

[33] Andrew Josey. The single unix specification version 4. Open Group, 2013.

[34] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo, and Jaejin Lee.
Snucl: an opencl framework for heterogeneous cpu/gpu clusters. In Proceedings of the
26th ACM international conference on Supercomputing, pages 341–352. ACM, 2012.

Robert F. Lyerly Chapter 7: Future Work 92

[35] Klaus Kofler, Ivan Grasso, Biagio Cosenza, and Thomas Fahringer. An automatic
input-sensitive approach for heterogeneous task partitioning. In Proceedings of the 27th
international ACM conference on International conference on supercomputing, pages
149–160. ACM, 2013.

[36] Lawrence Livermore National Laboratory. Rose compiler infrastructure, April 2014.
http://rosecompiler.org/.

[37] Hugh Leather, Edwin Bonilla, and Michael O’Boyle. Automatic feature generation for
machine learning based optimizing compilation. In Code Generation and Optimization,
2009. CGO 2009. International Symposium on, pages 81–91. IEEE, 2009.

[38] Sang-Ik Lee, Troy A Johnson, and Rudolf Eigenmann. Cetus–an extensible compiler
infrastructure for source-to-source transformation. In Languages and Compilers for
Parallel Computing, pages 539–553. Springer, 2004.

[39] Seyong Lee and Rudolf Eigenmann. Openmpc: Extended openmp programming and
tuning for gpus. In Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 1–11. IEEE
Computer Society, 2010.

[40] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. Openmp to gpgpu: a compiler
framework for automatic translation and optimization. ACM Sigplan Notices, 44(4):101–
110, 2009.

[41] Chunhua Liao, Yonghong Yan, Bronis R de Supinski, Daniel J Quinlan, and Barbara
Chapman. Early experiences with the openmp accelerator model. In OpenMP in the
Era of Low Power Devices and Accelerators, pages 84–98. Springer, 2013.

[42] Michael D Linderman, Jamison D Collins, Hong Wang, and Teresa H Meng. Merge: a
programming model for heterogeneous multi-core systems. In ACM SIGOPS operating
systems review, volume 42, pages 287–296. ACM, 2008.

[43] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: exploiting parallelism on
heterogeneous multiprocessors with adaptive mapping. In Microarchitecture, 2009.
MICRO-42. 42nd Annual IEEE/ACM International Symposium on, pages 45–55. IEEE,
2009.

[44] Marvin L Minsky and Seymour A Papert. Perceptrons - Expanded Edition: An Intro-
duction to Computational Geometry. MIT press Boston, MA:, 1987.

[45] NVidia. Nvidia’s next generation cuda(tm) compute ar-
chitecture: Fermi. Technical report, NVidia, 2009.
http://www.nvidia.com/content/PDF/fermi white papers/NVIDIA Fermi Compute Architecture Whitepaper.pdf.

Robert F. Lyerly Chapter 7: Future Work 93

[46] NVidia. Nvidia’s next generation cuda(tm) compute architecture: Kepler gk110. Tech-
nical report, NVidia, 2012. http://www.nvidia.com/content/PDF/kepler/NVIDIA-
Kepler-GK110-Architecture-Whitepaper.pdf.

[47] NVidia. Parallel programming and computing platform — cuda — nvidia — nvidia,
April 2014. http://www.nvidia.com/object/cuda home new.html.

[48] OpenACC. Openacc home — openacc.org, April 2014. http://www.openacc.org/.

[49] The Open MPI Project. Open mpi : Open source high performance computing, April
2014. http://www.open-mpi.org/.

[50] Reza Rahman. Intel(r) xeon phi(tm) core micro-architecture. Technical report, Intel,
May 2013. http://https://software.intel.com/en-us/articles/intel-xeon-phi-core-micro-
architecture.

[51] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, DTIC Document, 1985.

[52] Thomas RW Scogland, Barry Rountree, Wu-chun Feng, and Bronis R de Supinski. Het-
erogeneous task scheduling for accelerated openmp. In Parallel & Distributed Processing
Symposium (IPDPS), 2012 IEEE 26th International, pages 144–155. IEEE, 2012.

[53] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and W-m Hwu. Parboil: A revised benchmark suite
for scientific and commercial throughput computing. Center for Reliable and High-
Performance Computing, 2012.

[54] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in software.
Dr. Dobbs Journal, 30(3):202–210, 2005.

[55] Peter Thoman, Klaus Kofler, Heiko Studt, John Thomson, and Thomas Fahringer.
Automatic opencl device characterization: guiding optimized kernel design. In Euro-
Par 2011 Parallel Processing, pages 438–452. Springer, 2011.

[56] Tilera. Tile processor architecture overvew for the tile-gx series. Technical report,
Tilera, 2012. http://www.tilera.com/products/processors/TILE-Gx Family.

[57] Open Source Computer Vision. Opencv — opencv, April 2014. http://www.opencv.org.

[58] Yao Zhang, Mark Sinclair II, and Andrew A Chien. Improving performance portability
in opencl programs. In Supercomputing, pages 136–150. Springer, 2013.

