
Virginia Tech v Bradley Department of Electrical and Computer Engineering

ECE 4984 Linux Kernel Programming
ECE 5984 Advanced Linux Kernel Programming

Spring 2017, Course Syllabus

1 Course Reference Numbers (CRNs)
• Physical presence on VT Blacksburg campus:

– ECE 4984 - Linux Kernel Programming: 19480
– ECE 5984 - Advanced Linux Kernel Programming: 19494

• Off-campus online through WebEx:
– ECE 5984 - Advanced Linux Kernel Programming: 19563

2 Instructor
Dr. Pierre Olivier
Postdoctoral Associate
ECE Dept., Virginia Tech
Office: 453 Durham Hall, Blacksburg, VA 24061

2.1 Instructor office hours information

• Date and time:

– Monday 1 PM - 2 PM;

– Wednesday 1 PM - 2 PM.

• Location: Durham 460.
• Phone: 540-231-2494
• E-mail: polivier@vt.edu

Additional office hours will be performed by the course TA, as indicated below.

3 Graduate Teaching Assistant (GTA) and GTA office hours
Fazla Mehrab
ECE Dept., Virginia Tech
Office: 450 Durham Hall, Blacksburg, VA 24061

GTA office hours:
• Date and time:

– Tuesday 2:45 PM - 4:45 PM;

– Thursday 2:45 PM - 4:45 PM.

• Email: mehrab@vt.edu
• Location: Durham 460.

4 Course objectives
The Linux kernel is one of the most, if not the most, advanced operating system kernels with wide acceptance in the
industry and scientific worlds. It is used on a wide spectrum of computer hardware, from embedded and portable
devices to servers and HPC platforms, also including regular desktop and laptop computers. Due to its diverse
properties, many industrial projects are based on Linux (e.g., Google Android), and so is the majority of systems

1

mailto:polivier@vt.edu
mailto:mehrab@vt.edu


software academic research. Knowledge about the Linux kernel internals, as well as kernel programming skills, are
invaluable for a software engineer, especially one involved with systems software, but also for a hardware engineer
to test new features or devices.

The course will teach Linux kernel programming following two complementary directions: (A) the study of
the the different subsystems constituting the Linux kernel (roles, functions, and implementation); and (B) the de-
velopment of kernel code in the form of new kernel modules as well as the modification of existing subsystems.
Study and programming will concern all of Linux subsystems: processes, threads and scheduling; memory man-
agement; interrupt handling; device drivers; file system and block layer; network stack; synchronization and time
management; boot process. In addition, specific techniques for programming in that particular environment that is
the kernel will be studied, including kernel debugging methods, and large code base management and browsing
tools. Notions of performance evaluation for the previously mentioned subsystems and their interaction with user
application will be approached.

Upon completion of the course, the student will be able to:

• Identify the various subsystems composing the Linux kernel and describe their functionality, architecture, as
well as the main characteristics of their implementation;

• Design, implement and modify Linux kernel code and modules for these subsystems;

• Test, debug and evaluate the performance of systems software in kernel or user space, using debugging,
monitoring and tracing tools.

5 Prerequisites
• 4984: ECE 4534 (Embedded Systems Design) or CS 3214 (Computer Systems)
• 5984: Graduate standing
• Both levels: Good knowledge of C programming and the Linux command line is assumed. Knowledge con-

cerning algorithms, data structures, and computer architecture is recommended.

6 Course meeting time and location
Meeting time: Tuesday and Thursday, 5 PM - 6:15 PM.
Location: Torgersen 1000.

7 Required and recommended texts

7.1 Required

• Love, R. (2010). Linux Kernel Development, 3rd Edition. Addison-Wesley Professional. Pp. xxv, 440.

7.2 Recommended:

• Bovet, D. P., & Cesati, M. (2005). Understanding the Linux Kernel, 3rd Edition. O’Reilly Media. Pp. xvi, 944;

• Corbet, J., Rubini, A., & Kroah-Hartman, G. (2005). Linux Device Drivers, 3rd Edition. O’Reilly Media. Pp xvii,
640;

• Mauerer, W. (2008). Professional Linux Kernel Architecture, 1st Edition. Wrox. Pp. xxx, 1368;

• Love, R. (2013). Linux System Programming: Talking Directly to the Kernel and C Library, 2nd Edition. O’Reilly
Media. Pp. xx, 456.

8 Development environment
Some of the programming projects will require the student to install one or several Linux distributions (natively,
for example in a dual boot way) on their personal machines. Moreover, the student personal machine should support
hardware virtualization. Here are some resources to check for hardware virtualization support on one’s personal
machine:

• Windows:
– Intel CPU: https://downloadcenter.intel.com/download/7838/Intel-Processor-
Identification-Utility-Windows-Version

2

https://downloadcenter.intel.com/download/7838/Intel-Processor-Identification-Utility-Windows-Version
https://downloadcenter.intel.com/download/7838/Intel-Processor-Identification-Utility-Windows-Version


– AMD CPU: http://support.amd.com/en-us/search/utilities?k=virtualization
• Linux: http://www.cyberciti.biz/faq/linux-xen-vmware-kvm-intel-vt-amd-v-support
• Mac: http://kb.parallels.com/en/5653
Should the above points concerning the development environment be an issue, the student is encouraged to

contact the instructor.

9 Grading:

4984 5984
Graded work Final grade % Graded work Final grade %
4 small projects 10-20 % each 3 small projects 5-10 % each

(∼ 2 weeks of work each) (∼ 1-2 week of work each)
1 large project 35 % 3 large projects 20-30 % each

(∼ 4 weeks) (∼ 3-4 weeks of work each)
Final exam 10 % Final exam 10 %

Most of the grade will come for programming projects. The final exam will be open-book.

10 Honor Code Policy
Adherence to Virginia Tech’s honor code (Undergraduate Honor System: http://www.honorsystem.vt.edu/)
is expected in all phases of this course. All graded work is expected to be the original work of the individual student
unless otherwise directed by the instructor.

In working on the homeworks and projects, discussion and cooperative learning are allowed and, in fact, en-
couraged. However, copying or otherwise using another person’s solutions to the homework/project problems is
an honor code violation. Individual work is to be the work of the individual student. You may discuss general
concepts, such as software libraries, Internet resources, or class and text topics, with others. However, any discus-
sion or copying of homework/project solutions, specific code, or detailed report content is an honor code violation.
All source material used in homework/project code and reports must be properly cited. If you are using a shared
computer or disk, it is an honor code violation to leave your source, report, or other files on the computer where
others may access them, and it is an honor code violation to access other students’ files.

Please discuss any concerns about the honor code or any questions that you may have about what is or is not
permitted with the instructor.

Any violations of the honor code will automatically be forwarded to the Office of the Honor System.
The Undergraduate Honor Code pledge that each member of the university community agrees to abide by

states: "As a Hokie, I will conduct myself with honor and integrity at all times. I will not lie, cheat, or steal, nor will
I accept the actions of those who do."

Students enrolled in this course are responsible for abiding by the Honor Code. A student who has doubts
about how the Honor Code applies to any assignment is responsible for obtaining specific guidance from the course
instructor before submitting the assignment for evaluation. Ignorance of the rules does not exclude any member of
the University community from the requirements and expectations of the Honor Code. For additional information
about the Honor Code, please visit: http://www.honorsystem.vt.edu/.

11 Special Needs or Circumstances
Any student with special needs or circumstances should feel free to meet with or otherwise contact the instructor.

• Disability accommodation: Reasonable accommodations are available for students who have documentation
of a disability from a qualified professional. Students should work through Virginia Tech’s Services for Stu-
dents with Disabilities (SSD). Any student with accommodations through the SSD Office should contact the
instructor during the first two weeks of the semester;

• Religious accommodation: If participation in some part of this class conflicts with your observation of specific
religious holidays during the semester, please contact the instructor during the first two weeks of class to
make alternative arrangements;

• Accommodations for medical or personal/family emergencies: If you miss class due to illness, especially in the case
of an exam or some deadline, see a professional in Schiffert Health Center. If deemed appropriate, documen-

3

http://support.amd.com/en-us/search/utilities?k=virtualization
http://www.cyberciti.biz/faq/linux-xen-vmware-kvm-intel-vt-amd-v-support
http://kb.parallels.com/en/5653
http://www.honorsystem.vt.edu/
http://www.honorsystem.vt.edu/


tation of your illness will be sent to the Dean’s Office for distribution to the instructor. If you experience a
personal or family emergency that necessitates missing class, contact the Dean of Students.

12 Course website
http://www.ssrg.ece.vt.edu/lkp/.

13 Course topic outline (tentative)

Topic Req. Book Chapters
Generalities about Linux and software engineering techniques for large projects (ver-
sion control, toolchains, configure, make, kernel installation, kernel code explo-
ration/browsing)

1, 2, 5, 20

Kernel debugging techniques (printk, kernel traces/ftrace, kernel space debug-
ging/gdb, QEMU/KVM debugging, gdb scripting)

18

Device drivers and data structures (generic device drivers, kernel basic data structures,
kernel objects)

6, 17

Machine boot up process (BIOS, bootloader, compressed image, start_kernel, to
multi-user/multi-task, user-space initialization)

-

Memory management (segmentation, paging, software MMU, physical memory space
and allocation schemes, get_free_page / kmalloc / vmalloc / cache_alloc
and NUMA affinity, process address space and vma_struct, mm_struct, remapping
functions, I/O mapping)

12, 15

Linux process model and scheduling (kernel / user process context and task descrip-
tor, kthreads, nptl, process and lightweight threading models, syscalls, kernel / libc /
application interaction, scheduling and context switching)

3, 4

Kernel synchronization and time management 9, 10, 11
Interrupt / exception handling (interrupt paths, hardware and software interrupts,
synchronous exception handling, signals, system call fast path)

7, 8

Virtual file system (block layer and block cache, file system driver, I/O scheduler, ex-
tended file system)

13, 14, 16

4

http://www.ssrg.ece.vt.edu/lkp/

	Course Reference Numbers (CRNs)
	Instructor
	Instructor office hours information

	Graduate Teaching Assistant (GTA) and GTA office hours
	Course objectives
	Prerequisites
	Course meeting time and location
	Required and recommended texts
	Required
	Recommended:

	Development environment
	Grading:
	Honor Code Policy
	Special Needs or Circumstances
	Course website
	Course topic outline (tentative)

