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Abstract
We present an approach to lift position-independent x86-64 binaries
to symbolized NASM. Symbolization is a decompilation step that
enables binary patching: functions can be modified, and instruc-
tions can be interspersed. Moreover, it is the first abstraction step
in a larger decompilation chain. The produced NASM is recom-
pilable, and we extensively test the recompiled binaries to see if
they exhibit the same behavior as the original ones. In addition
to testing, the produced NASM is accompanied with a certificate,
constructed in such a way that if all theorems in the certificate
hold, symbolization has occurred correctly. The original and recom-
piled binary are lifted again with a third-party decompiler (Ghidra).
These representations, as well as the certificate, are loaded into
the Isabelle/HOL theorem prover, where proof scripts ensure that
correctness can be proven automatically. We have applied sym-
bolization to various stripped binaries from various sources, from
various compilers, and ranging over various optimization levels. We
show how symbolization enables binary-level patching, by tackling
challenges originating from industry.

CCS Concepts
• Security and privacy→ Logic and verification; • Software
and its engineering→ Software maintenance tools; Semantics.
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1 Introduction
Decompilation of binaries has been a heavily studied research topic
for decades [2, 7, 13, 15, 20, 24, 25, 37]. A typical scenario is lifting
a binary to a source-code-like representation, enabling human un-
derstanding of the semantics and structure of the binary. This is
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often necessary for legacy binaries whose sources are not wholly
or partially available, but whose security vulnerability analysis is
still a necessary task due to the need to rapidly patch program
errors, especially those that can be used to create security exploits.
Decompilation to the LLVM Intermediate Representation (IR) has
been studied as well [40], with the major advantage being that
the “distance” between the original binary and the produced IR
is less, enabling a more trustworthy decompilation. Mature and
industrially developed tools exists, such as IDA-PRO and Ghidra
(for reverse engineering) and McSema [11] (enabling application of
LLVM level tools on binaries), among others [13, 36, 37].

However, with some notable exceptions, very few decompilation
efforts focus on producing an IR that is both recompilable, patchable
and validatable. Recompilability implies that the produced IR can be
compiled back into a binary. Lifting approaches that target source-
code-like representations typically produce non-recompilable and
even unsound code. The lifted code has no clear semantics, has
holes in it, and is non-executable. Recompilability was never an
intended requirement of such decompilation suites: their inten-
tion is human-in-the-loop reverse engineering. Patchability means
that it is possible to do transformations. This typically requires
symbolization: instruction addresses as well as the addresses of
global variables, external functions and data sections need to be
replaced with labels [37, 38]. Finally, validatability ensures that it is
possible to check whether the produced IR is a semantically sound
representation of the original binary.

The motivation behind decompilation with these three prop-
erties is multifold. First, it enables a decompile-patch-recompile
workflow. Symbolization ensures that at recompile-time instruc-
tions and sections can be layed out by the recompiler, a prerequisite
for making any modification such as inserting instructions or re-
placing functions (more details follow in Section 2). Second, it aids
in the trustworthiness of the lifted IR. Recompilability allows one
to obtain an IR that is executable, and that can therefore be tested.
We argue that even if an IR is formally proven to be a correct repre-
sentation of the original binary, there still is much value in testing.
Testing, especially regression testing, shows that the IR truly exe-
cutes correctly in the original binary’s production contexts.

This paper presents a lifter from position-independent (PIE) x86-
64 binaries to Netwide Assembler (NASM) [8]. We have choosen
NASM as the IR since it is well-known, publicly and open-source
maintained, and is recompilable using standard off-the-shelf com-
pilation tools (nasm + gcc). Moreover, it is an assembly dialect that
supports symbolization. With proper options enabled, NASM can
be compiled only when it is fully symbolized; the compiler does not
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allow pointers to be immediate values. Most importantly, we argue
that it is an IR that is as close as possible to the original binary (en-
suring validatability), while still enabling patchability. See Figure 1:
straightforward disassembly produces an IR extremely close to the
original binary, but does not allow modifications. NASM is only one
step further: its nearness to the original binary allows validation,
but we demonstrate that patching is possible at this level. LLVM IR
has more distance from the original binary: it has an unbounded
number of variables, function scoping, rudimentary types, and is
architecture agnostic. Validating the soundness of lifted LLVM IR
with respect to an original binary is an unsolved open problem.

Binary

Assembly

NASM LLVM IR
“source-like”

code

Figure 1: Distances of IRs used in decompilation to the origi-
nal binary.

We present an approach to validate whether the lifted NASM
is sound. We define a lifter to be sound, if it produces an IR that
can be recompiled into a binary semantically equivalent to the
original. We thus validate whether the original binary B0 and the
recompiled binary B𝑟 run in lockstep fashion (see Figure 2). Such a
strong property can only be met due to the nearness of NASM to
B0; a larger decompilation distance typically destroys this property.
Notably, this approach is entirely orthogonal to both the NASM
lifter as well as the recompiler, i.e., it only considers the two binaries
(not the IR) to prove that they run in lockstep fashion. The proofs
are formalized in Isabelle/HOL [28] and fully automated.

Binary B0 NASM

Binary B𝑟
nasm+gcc

Equivalence Check

Figure 2: Lifting and recompilation.

Even though the state-of-the-art provides a multitude of tools
dedicated to reverse engineering and decompilation of binaries
(more discussion follows in Section 7), soundness and recompilabil-
ity are relatively understudied; they are discussed mostly in the
work on McSema [11], Ramblr [37] and FoxDec [35]. Ramblr and
its early iteration Uruburos [38] are – to the best of our knowledge
– the first to present results on recompilability of symbolized as-
sembly, discussing overhead of running time and memory usage.
They execute test cases on their recompiled binaries as well. The
key novelty of our work with respect to these prior works, is that

our lifted IR comes with a certificate that enables an automated and
formal proof of soundness. In other words, our research contribu-
tion is a methodology for lifting binaries to a symbolized IR with a
formal proof of soundness.

Section 6 discusses the application of lifting to symbolized NASM
on a set of binaries. We discuss how recompiled binaries are tested
to behave similar to the original ones. We compare running times
and memory usage, and show with experimental results that the
overhead is negligible. Moreover, we discuss the manual effort
involved in applying a patch to a binary. We discuss verification
times, which is roughly four hours for binaries of 20 000 instructions.
The scope of binaries is discussed in detail in Section 3; it amounts
to PIE x86-64 ELF binaries compiled from valid C code.

As demonstrative case studies, we deploy NASM lifting in the
solution to challenge problems set in a DARPA research program.
The challenges, discussed further in Section 6, include:

• Modify the binary wget so that it only includes HTTPS; any
unsecure HTTP should be removed.

• Modify the behavior of OpenSC (a set of software tools and
libraries for smart cards) by inserting a check to only load
libraries whose file names match a predefined list.

• Achieve a rudimentary form of compartmentalization [16,
26, 32] by restricting the memory writes of a function to its
own stack frame.

We have addressed all these challenges at the binary level, e.g.,
we have made modifications to the wget binary to produce a new
binary wget_.

To summarize, this paper contributes:
(1) The first lifting tool for lifting PIE x86-64 ELF binaries to

symbolized NASM;
(2) An approach to formal validation of recompiled binaries;
(3) A demonstration of use-cases for binary patching enabled

by symbolized NASM lifting;
(4) Experimental results comparing original and recompiled

binaries.

Example 1. Figure 3 presents an example of NASM lifted from an
x86-64 binary. A couple of transformations have happened. Some rip-
relative addresses have been transformed into address computations
relative to the beginning of their section. For example, the address
computed by the second instruction belongs to the .data section of
the binary. Second, a label L1 has been introduced since it is a possible
jump target. The code loads a function pointer into register rax twice:
once an internal function symbolized to label L2, and once an external
(dynamically linked using the NASM keyword wrt ..plt) function
puts. It calls either of these functions indirectly, based on the initial
value of register edi.

All implementations and formal proofs have been made publicly
available:

https://doi.org/10.5281/zenodo.12721325
The next section discusses use cases for lifting binaries to sym-

bolized NASM. Section 3 discusses assumptions, scope and limita-
tions. Section 4 then provides an overview of how symbolization is
achieved. Section 5 presents validation, discusses the soundness def-
inition, as well as threats to validity. In Section 6, we discuss results
and applications. We describe an example of a lift-patch-recompile

https://doi.org/10.5281/zenodo.12721325
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1068: mov eax,QWORD PTR [rip+0x2fa2]

106e: mov QWORD PTR [rip+0x2fbc],eax

1074: lea rax,[rip+0x115]

107b: cmp edi,0x3

107e: jle [rip+0x7]

1080: mov rax,QWORD PTR [rip+0x2f51]

1087: lea rdi,[rip+0xf7f]

108e: call rax

(a) x86-64 Assembly

mov rax, qword [stderr]
mov qword [.bss + 0x10], rax
lea rax, [L2]
cmp edi, 0x3
jle L1
lea rax, [puts wrt ..plt]

L1: lea rdi, [.rodata + 0xd]
call rax ; Resolved: [puts,L2]

(b) Symbolized NASM

Figure 3: Assembly code and the lifted NASM.

workflow step-by-step. Related work is discussed in Section 7 before
we conclude with discussion in Section 8.

2 Use Cases of Lifting to Symbolized NASM
We discuss a couple of examples of use cases enabled by lifting to
recompilable and symbolized NASM. Each of these use cases has
been performed, on binaries in the order of complexity of CoreUtils
such as tar, wget and wc.

Binary patching is achieved by lifting a binary, making a seman-
tical modification, and then recompiling it. Examples are:

• Instruction or function insertion/removal: without symbol-
ization, the layout of instructions is fixed. One can replace
a single instruction with another instruction of the same
byte-length, and even achieve a form of trampolining that
way [12], but other modifications are hard. Removal of dead
code is feasible using static analysis [30], but simply adding
a new text- or data section is hard or impossible. Symboliza-
tion ensures that the recompiler can redo the entire layout.
Therefore, it is easy to insert functions, intersperse instruc-
tions between existing ones, remove dead code, or add new
data sections that were not in the original one.

• Function updates: for the same reason as above, one can
update functions as well. One can replace functions that are
deprecated with an error message or a reimplementation.
Reimplementation can be done at the source code level. If
one wants to replace a function fwith a new implementation,
then function f can be removed from the binary and declared
as external. Then, one can write a new C function f, compile
it to an object file, and add that object file to the linker during
recompilation.

Binary hardening can be achieved by de-then-recompiling a
binary, without doing semantical modifications. Examples are:

• The x86 endbr64 instruction [34] is a security mechanism
introduced by Intel that offers hardware protection against
Return-oriented Programming (ROP, [31]) and Jump/Call-
oriented Programming (JOP/COP, [4, 6]) attacks. Simply
put, every function entry should start with an endbr64 in-
struction, enabling Intel’s CET technology to implement a
shadow stack that offers protection against such vulnerabil-
ities. By lifting to a symbolized IR, one can automatically
insert endbr64 instructions and thereby harden the binary.

• When a binary makes use of dynamic linking (as is typical in
binaries), the linker writes – at linking time – addresses of
external functions into relocation entries. In older versions of
ELF files, the section containing these relocation entries are
found in a writable data section (as the linker needs to write).
This is a vulnerability, as a pointer to executable code is in a
writable segment. Newer ELF files contain a .data.rel.ro
section that is read-only after dynamic relocations have been
applied.We harden old versions of binaries so that they make
use of .data.rel.ro sections.

• Binary-level debugging information is extremely useful for
analyzing low-level crashes or assertion violations. A stripped
binary comes with no debugging information. By recompil-
ing with gcc’s debugging option -gwe can insert debugging
information, allowing to easily find out the exact path lead-
ing to a crash where previously that was hard.

3 Discussion on Assumptions
The main challenge in symbolization of assembly is identifying
which values are pointers, assessing where they point to, and use
that information to decide how to symbolize. In general, this re-
quires binary-level pointer analysis, a notoriously hard problem to
solve accurately [14]. The fundamental problem lies in classifying
immediate values: if the value falls within the range of possible
addresses of instructions or data, then it is undecidable whether
that value constitutes a pointer or not.

That problem, however, does not present itself in the case of
PIE executables. Pointer computations can be arbitrarily complex.
However, we argue that for PIE executables, the computation of
the base of a pointer is limited to a set of specific cases. Each of
these cases can be symbolized, and as such each pointer can be
symbolized. We have identified the cases in Figure 4.

A pointer base is introduced when reading in rip, returning
some statically known immediate value 𝑖 . It may be introduced by
reading the stack pointer (typically register rsp) or the Thread-
Local-Storage (TLS) pointer (typically segment register fs). It can
be introduced by an external function, or it can be introduced by
having been passed to the current function as parameter through
some register or somewhere in memory (𝑝 denotes some part of
the initial state, be it a register or memory). A pointer base can also
be introduced by reading from a part of the memory that contains
an immediate value 𝑖 that has been written there during runtime
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Base ≡ IP 𝑖 Instruction Pointer lea rax, [rip+0x15]
| SP Stack Pointer mov qword ptr [rsp - 0x30], rax
| TLS Thread-Local-Storage Pointer mov rax,qword ptr fs:0x28
| EX 𝑓 Generated by external function call malloc
| IN 𝑝 Initial value mov qword ptr [rdi], rax
| REL 𝑖 Relocation dq 00 40 00 00 00 00 00 00
| RET Return address call/ret
| TBL 𝑖 Jump table entry

Figure 4: Pointer Bases in PIE binaries, with examples of instructions that introduce pointers with such bases.

linking by the OS (a relocation). The return address is a pointer as
well. Finally, pointers can be introduced by a series of instructions
that combine non-writable data from a jump table with the current
rip. Such a jump table does not necessarily contain immediate
pointer values itself, but data that combined with a certain rip
value through some instructions produce an immediate value 𝑖 .
Different compilers can have different implementations.

Assumption 1. Every pointer in the binary is computed with as
positive addend a Base, i.e., its computation has the form 𝑏 ± 𝑎0 ±
𝑎1 ± . . . for some Base 𝑏 and some possibly empty set of addends 𝑎0,
𝑎1, . . ..

Note that this assumption does not hold for non-PIE executa-
bles. There, an immediate address may be used directly, without
containing a base such as above.

Lifting, symbolization and then recompilation produces a binary
in which pointers will have different values. Soundness of this
process can only be assured when the actual values of pointers at
runtime do not influence the behavior of the binary. For example,
the following source code snippet has behavior depending on the
value of a pointer:

int global;
void main () {

printf("%p\n", &global);
}

This program may print a different value after symbolization and
recompilation, since the data section may have been moved. We
cannot prove that the observable behavior of the binary obtained
by compiling this code will be preserved after lifting, symbolization
and then recompilation, since the printed value may be different.

Assumption 2. The observable behavior of the binary is independent
of the values of pointers.

The crucial consequence of these assumptions is that if all base-
introductions are symbolized, then the binary is symbolized. The
intuition is that the only addend of a pointer that must be symbol-
ized is its base. All other computations to it, and any behavior that
ensues the base-introduction, remains unmodified. This explains
how symbolization can be done even in the presence of unresolved
indirections. Consider an instruction jmp rax. Register rax holds a
pointer. Even if statically it cannot be established where this pointer
may point to at runtime, as long as the instructions that compute
the base of the pointer have been symbolized, the instruction will
jump to the right address after symbolization.

Assumption 3. The set of reachable instructions can be overapprox-
imated given a manually supplied set of function entries.

Any decompilation effort assumes that all reachable instructions
have somehow been disassembled. That, however, is an undecidable
problem, due to indirections and mixing of data and instructions.
Our approach assumes a list of function entries, from which the
binary is explored through recursive traversal. The next section
discusses how such a list can be obtained interactively. If the list is
incomplete, then this will be detected at recompile-time. Note that
the reachability problem heavily exacerbates when dealing with
C++ binaries due to exceptional control flow. For that reason, we
consider those binaries out of scope.

To intuitively summarize, our approach works for x86-64 PIE
binaries in the ELF format that have been obtained by compiling
code that adheres to the C standard.

4 Symbolization
Prerequisites. A CFG is a graph with as vertices basic blocks, i.e.,

lists of disassembled instructions. LetW64 denote 64-bit words. We
assume the existence of a function ∆ of typeW64 ↦→ {CFG}. This
function takes as input an entry address (be it the entry address
of the binary, or the entry address of some function within the
binary), and produces a set of CFGs. It recursively traverses the
binary, building a CFG. If an internal function call is encountered,
this may produce a separate CFG. We explicitly acknowledge that
function ∆ is typically incomplete, i.e., executing this function even
on the main entry point of the binary will not produce all functions,
nor cover all instructions. It suffices if it covers as much of the
binary as possible. We have used the disassembler of Verbeek et
al. [35] as it comes with a formal proof of soundness of the produced
CFGs (modulo unresolved indirections). Moreover, we assume the
existence of a set of entry addresses 𝜀 of type {W64}.

Relocations are a mechanism to achieve PIE binaries. A binary
(even when stripped) contains a relocation table with entries of the
form 𝑎0 ↣ 𝑎1, with 𝑎0 and 𝑎1 of typeW64. Here 𝑎0 is an address
somewhere in a data section of the binary (typically a .bss sec-
tion). This means that during runtime linking, the OS will write
the relative value of 𝑎1 into memory at relative address 𝑎0. In other
words, at runtime, *𝑎0 == 𝑎1.

The main algorithm of symbolization is to apply function ∆ to
all entry addresses in 𝜀, traverse all produced CFGs, and symbolize
each instruction. Whenever an instruction introduces a pointer
base, it needs to be modified only in the three cases where the base
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contains some immediate 𝑖 . We first describe how immediates are
symbolized, and then how jump tables are treated.

Symbolization of Immediates. Let 𝑖 of typeW64 be an immedi-
ate value occurring in some Base 𝑏. The following steps can be
undertaken, with examples relative to Figure 3.

• Value 𝑖 is the address of some instruction within the cur-
rently known set of CFGs. In this case, that instruction is
labeled with fresh label L and value 𝑖 is replaced with label
L. Example: line 107e.

• According the binary’s symbol table, value 𝑖 is a pointer
to memory storing the address of an external function f.
In this case, an operand qword ptr[i] is replaced with
f wrt ..plt. This will ensure that external functions can
be loaded dynamically in the recompiled binary using a pro-
cedure linkage table. Example: line 1080.

• According to the symbol table, value 𝑖 is a pointer to an
external object O. In this case, value 𝑖 is replaced with label
O. Example: line 1068.

• The binary’s relocation table contains a relocation of the
form 𝑖 ↣ 𝑎1. A fresh label L is inserted into the data section
and value 𝑖 is replaced with label L. Note that 𝑎1 is itself
an immediate pointer and is symbolized according to these
rules as well.

• Value 𝑖 is within the range of addresses encompassed by
a data section (be it .rodata, .bss, . . .). A fresh label L is
inserted into the data section and value 𝑖 is replaced with
label L. Example: line 106e.

It may be the case that none of these cases apply. In Figure 3, if
the code snippet is symbolized as-is, then line 1074 will produce
a dangling pointer. In practice, this indicates that set 𝜀 is incom-
plete (without exception, this was the case for any dangling pointer
found during symbolization of all applications). We thus add the
dangling pointer to 𝜀 and rerun symbolization, after which the dan-
gling pointer has been eliminated. This may produce new dangling
pointers, but without exception we have not needed to repeat more
than twice in any of the applications.

Symbolization of Jump Tables. We explain the treatment of jump
tables by example (see Figure 5). We would like to stress that com-
pilers may implement jump tables in different ways, and that our
approach is independent of compiler-specific implementations. The
code first loads the address of the jump table into register rbp. Then,
at some point, it checks whether some index (in rcx) is bounded
by 8. It then reads a 4-byte jump table entry. The read data is not
yet the pointer: that is obtained by adding the address of the jump
table itself to the read data.

Our approach traverses the binary backwards, starting at the
unresolved indirection at line d18e. It tries to find a conditional
jump that bounds an index (line d182). If found, then it initializes
symbolic states that store no information other than that the index
has a concrete value. In the example, it would generate eight states
with each a value for register ecx, starting at line d184. During
symbolic execution, it then encounters a register with an unknown
value (rbp). It again traverses backwards to see if it can concretize
that register as well. Ultimately, if this process can ensure that all
registers used in the computation of the indirection are concrete,

d102: lea rbp,[rip+0x5fa87]
. . .
d17f: cmp ecx,0x8

d182: ja d1fd

d184: mov edx,ecx

d186: movsxd rdx,DWORD PTR [rbp+rdx*4]

d18b: add rdx,rbp

d18e: jmp rdx

Figure 5: Example Implementation of Jump Table

then the indirection can be computed. This produces an observation
that:

@d184 : ecx 0 1 2 3 4 5 6 7
@d18e : rdx d198 d210 d230 d198 d2c8 d310 d340 d360

Symbolization now inserts an instruction at line d184, thatmoves
the value of ecx to memory. In the produced IR, we add a new 8 byte
data section to the binary to that end. The following instructions
are then executed as normally. At line d18e, register rdx is then
discarded, and the jump is replaced with instructions that based
on the stored value in that special data section jump to the right
address. The reason that we still execute all instructions up to the
jump is because it may be the case that they modify state other
than computing the jump. The inserted instructions that replace
the jump are such that they do not modify any part of the state –
not even flags – other than register rdx and rip.

5 Verification
As Figure 2 shows, our approach produces a recompiled binary B𝑟

from an original binary B0. This section discusses how we verify
an equivalence relation between both binaries. Besides formal ver-
ification, we also apply testing to both binaries, as they are both
executable. Section 6 discusses the testing setup and results.

The binaries B0 and B𝑟 are similar, but not equivalent. Instruc-
tions as well as data sections have been transposed. A transposition
Γ maps addresses from B0 to addresses in B𝑟 . We thus aim to for-
malize that binariesB0 andB𝑟 are semantically equivalent “modulo
transposition”. Ideally, one would formalize a relation over states
that returns true if and only if one state is the transposition of
the other. Such relation could be used to show a bisimulation [1]
between the two binaries. This approach, however, is infeasible
as it is impossible to know if, e.g., a value stored in a register is
a pointer that needs to be transposed or a regular value. We thus
formalize the desired equivalence differently, i.e., by transposing
the semantics, not the state. For example, the semantics will contain
a function that reads from a memory address. The transposed se-
mantics will first transpose that memory address before executing
the read.

Let Σ denote the type of binary-states: states with registers,
flags and unstructured memory. Let the semantics of executing a
single instruction 𝑖 be defined by a transition relation ↦−→𝑖 of type
Σ×Σ ↦→ B. The semantics of a binary B can be defined inductively,
by identifying a set of valid initial states (e.g, the instruction pointer
is set to the entry-point of the binary and the sections are loaded
into memory), and the per-instruction transition relation. This
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produces transition relation ↦−→B for binaryB. Given transposition
Γ, notation ↦−→Γ will denote the transposed semantics. One could
then formalize equivalence as:

↦−→B0
Γ = ↦−→B𝑟

In words, the transition relation of the recompiled binary is exactly
equal to the transposed transition relation of the original binary.

However, a second complication arises due to the fact that some-
times instructions have been inserted, e.g., to symbolize jump tables.
These instructions are choosen in such a way that the net effect
of each basic block is the same, even when in the middle of a ba-
sic block different instructions are executed. We therefore define
binary-equivalence by requiring that the two control flow graphs
are isomorphic (denoted �), and that all isomorphic basic blocks
have semantics that are exactly equal. A basic block is a sequential
list of instructions, and thus we define the semantics of a basic
block [𝑖0, 𝑖1, . . .] as follows:

𝑠0 ↦−→[𝑖0,𝑖1,...] 𝑠′ ≡ ∃𝑠1, 𝑠2, . . . · 𝑠0 ↦−→𝑖0 𝑠1 ↦−→𝑖1 . . . 𝑠′

Definition 1. Let Γ be a transposition. Let 𝑔0 and 𝑔𝑟 be the CFGs,
and let 𝛽0 and 𝛽𝑟 be the sets of basic blocks of B0 and B𝑟 . Binaries

B0 and 𝐵𝑟 are Γ-similar, notation
Γ≃, if and only if:

B0
Γ≃ B𝑟 ≡

{
𝑔0 � 𝑔𝑟

∀𝑏0 ∈ 𝛽0, 𝑏𝑟 ∈ 𝛽𝑟 · 𝑏0 � 𝑏𝑟 =⇒ ↦−→𝑏0
Γ =↦−→𝑏𝑟

In words, the CFGs are isomorphic and for each isomorphic pair
of basic blocks (𝑏0, 𝑏𝑟 ) the transposed semantics of basic block 𝑏0
are exactly equal to the semantics of basic block 𝑏𝑟 .

5.1 Transposed Semantics
A crucial element in defining instruction semantics is memory
accesses. These can be defined using generic Load and Store op-
erations (see Figure 6). A memory region is denoted [𝑎, si] stor-
ing an address 𝑎 and a size (in bytes) si. Consider the instruction
Load 𝑟𝑑 [a, si]. If a is an immediate address, that address is trans-
posed. If it is a register, then the address is read from that register
but not transposed, since it can only have been written to that
register after transposition to begin with.

𝑎 = Γ(imm) 𝑣 = read(𝑎, si, 𝑠)
𝑖 = Load 𝑟𝑑 [imm, si]

𝑠 ↦−→𝑖
Γ 𝑠 (regs(𝑟𝑑 ) B 𝑣)

𝑎 = 𝑠 .regs(𝑟𝑠 ) 𝑣 = read(𝑎, si, 𝑠)
𝑖 = Load 𝑟𝑑 [rs, si]

𝑠 ↦−→𝑖
Γ 𝑠 (regs(𝑟𝑑 ) B 𝑣)

𝑎 = Γ(imm) 𝑣 = 𝑠 .regs(𝑟𝑠 )
𝑖 = Store [imm, si] 𝑟𝑠

𝑠 ↦−→𝑖
Γ write(𝑎, si, 𝑣, 𝑠)

𝑎 = 𝑠 .regs(𝑟𝑑 ) 𝑣 = 𝑠 .regs(𝑟𝑠 )
𝑖 = Store [𝑟𝑑 , si] 𝑟𝑠

𝑠 ↦−→𝑖
Γ write(𝑎, si, 𝑣, 𝑠)

Figure 6: Load and Store semantics, based on functions read
and write that perform memory access in little-endian fash-
ion.

Other than memory accesses, a crucial element of instruction
semantics is in the operations executed by the instructions. The
different types of operations are numerous, ranging from floating-
point operations, to cryptographic operations, to byte-level swaps,
arithmetic, logic, etc. However, note that we do not need a formal
semantics for all these operations. All we need to prove, is that the
same operations are applied to the same values. Basic operations,
such as arithmetic, logic and flags are given a formal semantics,
but the majority of operations are modeled through uninterpreted
functions.

Combined, this produces a transition relation ↦−→𝑖
Γ . The untrans-

posed transition relation ↦−→𝑖 can be derived by taking as Γ the
identity function.

5.2 Proving Semantical Equivalence
Deciding Γ-similarity requires three ingredients:

(1) Recovering control flow graphs;
(2) Performing symbolic execution over basic blocks;
(3) Proving equivalence between two symbolic states.
Figure 7 provides an overview of the verification approach. Start-

ing with binary B0, the binary is lifted to NASM, and recompiled
to binary B𝑟 . Both binaries are then lifted to low P code using the
Ghidra decompiler. Low P code is an IR specifically developed for
Ghidra. The use of Ghidra provides two advantages:

• Low P code reduces the complexity of the CISC x86-64 in-
struction set to a RISC-style instruction set of only 64 instruc-
tions. It is therefore relatively easy to formalize the language
in a formal environment and to build a symbolic execution
engine for it.

• We argue that the verification effort should be orthogonal
to the lifter that created the recompiled binary. For example,
if during verification we reconstruct CFGs with the same
tool as used during NASM creation, then a bug in that CFG-
reconstruction may be missed even if the verification effort
succeeds. We thus use Ghidra during verification, a state-
of-the-art externally developed binary analysis framework,
instead of reusing internally developed tools.

During lifting, a mapping 𝛾0 is produced that is used to construct
the mapping Γ needed to prove Γ-similarity. The lifter does not
have any information of binary B𝑟 at its disposal, as it does not yet
exist. The only information it can produce is mapping 𝛾0 that maps
addresses of B0 (thus: addresses from within the original binary)
to labels in binary B𝑟 . Only after recompilation it can be seen what
addresses these labels will correspond to. Thus, after compilation a
mapping 𝛾𝑟 is produced from labels to addresses in B𝑟 . Mapping Γ
is then obtained by functional composition:

Γ ≡ 𝛾𝑟 ◦ 𝛾0

The low P code combined with mapping Γ produce a certificate.
The certificate is a set of theories formulated in Isabelle/HOL [10,
17, 28], such that if all lemma’s in the certificate can be proven,
then binaries B0 and B𝑟 are Γ-similar. To this end, we use Ghidra to
construct two CFGs. These include all basic blocks. Per isomorphic
pair of basic blocks (𝑏0, 𝑏𝑟 ) , we generate a lemma that formulates:

↦−→𝑏0
Γ = ↦−→𝑏𝑟
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Binary B0 Lifter

NASM

𝛾0

nasm + gccBinary B𝑟

Ghidra

P-CodeP-Code

Certificate Generation
B0

Γ≃ B1

Isabelle/HOL

Figure 7: Verification Flowchart

The certificate also contains a proof tactic to automate the proofs.
This tactic have been implemented using the Eisbach language for
defining proof methods [22]. The tactic first symbolically executes
both basic blocks, producing two symbolic states. These symbolic
states are expressed as a series of state-updates. In order to prove
their equivalence, the tactic will consider these state changes ony-
by-one, and prove that they occur to the same state-part, and with
the same symbolic value.

5.3 Threats to Validity
Even if two binaries are formally proven to be Γ-similar, there may
be issues preventing them from exhibiting the exact same behavior
when executed. We identify and discuss three possible causes, and
their mitigations.

Alignment may cause execution to differ even if the exact same
instructions are executed on the exact same data. There exists x86 in-
structions that behave differently depending on how they memory
region they access is aligned. An example is the MOVDQA instruction
which can causes a segmentation fault when its region is not prop-
erly aligned. Consider two hypothetical binaries both consisting of
the same single MOVDQA instruction. These are Γ-similar, however,
one may crash where the other may succeed. We mitigate this issue
by transferring the alignments from the original binary to NASM,
so that the recompiled binary has the same alignments as the origi-
nal one.

Bugs in Ghidra may enable a scenario in which Γ-similarity is
proven for two semantically different binaries. Consider, hypotheti-
cally, a scenario in which Ghidra does not produce complete CFGs,
i.e., it omits basic blocks that are reachable during execution. This
scenario may realistically happen, e.g., if code is only reachable
through some indirection. In such a scenario, it may happen that
Γ-similarity is proven only over a subset of the reachable part of
the binaries. We mitigate this issue by supplying Ghidra with infor-
mation on which functions have been de- and recompiled, which
sometimes will aid Ghidra in discovering reachable instructions.
However, other issues in CFG reconstruction may occur. For ex-
ample, Ghidra may not correctly resolve an indirection. We argue
this issue cannot ever be mitigated in full: any disassembler, be it
Ghidra, IDA-PRO, Radare2, or angr, may suffer from this issue.

External functions may behave differently after recompilation. We
prove Γ-similarity only over the instructions within the binaries.
External functions, i.e., functions loaded at linking time, are not
considered. It is proven that the recompiled binary calls external
functions with the same name. For example, it is proven that both
binaries will execute an instruction call printf. However, the
recompiler decides how to link external symbols to their implemen-
tations. It may be the case that during recompilation, one needs to
manually supply the libraries with which to link. The same holds
for external objects such as stdout or __progname.

The above issue can be seen as a specific case of a more generic
threat to validity. The task of the recompiler mostly consists of
linking different object files and producing a PIE executable (e.g.,
implementing a PLT section so that external functions are executed
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properly). Various other tasks commonly executed during compila-
tion (e.g., optimizations or insertion of security mechanisms such
as stack protectors) are not performed as the exact instructions
to be executed are given and fixed. In general, if the recompiler
performs its task differently from the original compiler, the two
binaries may behave differently. A specific example is that if the
recompiler links to different external functions than the original
compiler, this can cause an issue even if the binaries are formally
proven to be Γ-equivalent.

6 Experimental Results and Applications
Table 1 provides an overview of binaries that have been lifted and
recompiled. We have lifted binaries from the Parsec benchmark
suite [3], various CoreUtils binaries, the FDLIBM library (software
implementations of various mathematical functions), openSSL, and
OpenSC. The binaries were compiled through their own build mech-
anisms, i.e., we did not control which compiler was used or which
compiler settings such as optimization level.

#Instructions Name Part of Success
771 blackscholes Parsec
36 181 ferret Parsec
1810 vips Parsec
891 vips.mergup Parsec
787 vips.find_mosaic Parsec
30 970 du CoreUtils
14 127 gzip CoreUtils
3043 hexdump CoreUtils
9915 sha512sum CoreUtils
18 309 sort CoreUtils
6346 tar CoreUtils
6272 wc CoreUtils
81 768 wget CoreUtils
14 317 fdlibm FDLIBM
113 551 ssh OpenSSL No
12 188 OpenSC OpenSC
351 246

Table 1: Lifted and Recompiled Binaries

We discuss the following questions relative to this table:
Q1. Can it be confirmed through testing that the recompiled binary

behaves the same as the original?
Q2. Does recompilation incur overhead in terms of running time

or memory usage?
Q3. Did verification/testing expose issues?
Q4.What manual effort is involved in executing a patch?
Q5. How long does verification take?

Q1 & Q2 (testing and observing the recompiled binary):
We have tested for observable behavior as well as trace equiva-

lence. Testing for observable behavior consists of running a binary
and observing whether the output is as expected. Testing for trace
equivalence consists of running a binary and logging a trace of
which instructions are executed at runtime, as well as the data read
by the instructions.

Observable behavior: The CoreUtils library comes with a profes-
sionally maintained manually developed test-suite tailored to the
binaries at hand. This test suite has a large degree of coverage of
both normal as well as unexpected behavior. For all recompiled
CoreUtils binaries, we have replaced the original binaries with
the recompiled ones and run the test suite as-is. All test-cases are
successful. With respect to Parsec, we have run the programs on
the inputs provided by the benchmarks and confirmed equal out-
put. For the FDLIBM library, we have replicated the testing set up
of Verbeek et al. [36] which generates a large number of random
floating-point numbers in various ways (e.g., random bitstrings, or
sampling from likely values). Each mathematical function (e.g., sin
or log) is applied to all random numbers and the output is logged
for comparison to the original. No differences have been found.

Trace equivalence: With gdb we have logged traces. A trace con-
sists of a list of trace elements, where each trace element contains
1.) which instruction is executed, and 2.) the data stored in the
source operands before execution of the instruction. Since that data
may consist of pointer values, the traces will differ. We therefore
print data only if it does not “look like” a pointer. At runtime, point-
ers typically have large values. By printing data only if its integer
interpretation is less than a certain cap (e.g., 100 000), one obtains
two traces that are textually equivalent. One can use a textual diff
to compare the traces. The only differences found are in nop oper-
ations, and instructions due to reimplementations of indirections.
Of course, theoretically the use of such a cap is unsound: there may
be non-pointer values larger then the cap. However, we argue that
this approach provides substantial increase in trustworthiness in
addition to both verification and testing for observable behavior.

In all cases, no detectable difference in either running time or
memory usage has been encountered. The Parsec benchmark suite
specifically is intended for benchmarking running times. This result
is as expected: the recompiled binary executes virtually the same
instructions as the original. Only in case of indirections, compu-
tations on how these indirections are computed may differ. The
difference is at most four of five instructions per indirection, which
has negligible impact.

Q3 (issues during symbolization):
Testing has exposed an issue related to the standard C library

function error. Initially, it was assumed that this function always
terminates. That is not the case, it may terminate based on the
value of the first parameter. In cases where the function was used
without immediate termination, we could observe difference in the
exit value of the binary. The issue has been resolved.

All recompiled binaries executed correctly, with as notable ex-
ception the ssh binary. Both the observable behavior as well as
traces diverge for some executions. We have been able to run the
recompiled binary successfully, however, in some cases where an
error message is to be produced by the binary, behavior diverges,
We have traced the issue to a specific part of a .data section that
initially contains just the value 0, but is at linking time initialized
with a value by the OS in the original binary, whereas the same
does not happen for the recompiled binary. We suspect this is due
to specific compilers flags used during compilation of the original
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binary.

Q4 (applying a patch):
We here describe the manual steps involved in a realistic semanti-

cal patch; a challenge proposed in the context of a DARPA research
program. The challenge is to modify the binary wget so that it only
includes HTTPS and disallows HTTP. This required several patches:
we have removed a command-line option, and introduced checks
whether an opened connection is HTTP or not. We here describe
the simplest patch for sake of explanation.

The first step is lifting, where the only manual effort consists
of dealing with dangling pointers (see Section 4). The next step is
to find hooks, i.e., the points where it makes sense to insert a new
function. Through manual analysis, we have identified a point just
before a function return where a check can be inserted whether
the connection is HTTP. Inserting a function call just before the
pops before a ret is convenient, as there we assume that the local
stack frame can be discarded and callee-saved registers may be
used. This even allows calling functions, without destroying any
part of the state that is not allowed to be destroyed according to
the calling convention. We identify that the value currently stored
in rax provides the connection type as an integer. That value is
thus stored, and passed to the patch as first parameter in register
rdi (see Figure 8a). The patch is called, and register rax is restored,
before continuing execution as normal.

Within NASM, function myPatch is declared as external. The
NASM can be compiled to an object file wget_.o. Function myPatch
can be written in C (see Figure 8b) and compiled to another object
file myPatch.o.

Recompilation then is performed by the following command:

gcc -g -m64 -nostartfiles
-o wget_
wget_.o myPatch.o
-lgnutls -lidn2 -lnettle

The options on the first line are fixed for recompiling NASM.
They instruct gcc to not use the standard system startup files when
linking, as all of this machinery is already present in the NASM file.
The second line names the executable. The third line tells gcc to
link both object files.

The main manual effort is then in identifying which libraries
need to be linked to resolve all external functions. If one omits
a library, recompiling will not succeed. For the wget case study,
we manually select three libraries that need to be installed before
recompilation succeeds.

As second example, we sketch the contours of an approach to
achieve compartmentalization. The challenge is to ensure that a
given function can only write to a given part of the memory (in
this example, it should only write to is own stack frame). The
function belongs to a server that expects data from a client and
writes it to a buffer. Our approach is to first identify which memory
writes occur where to a base is added some dynamically computed
addend. An example of such a memory write is an instruction
with operand rbp + rdx - 0x60. The base is register rbp which

stores the frame pointer, but an unknown value rdx is added. Since
the base is the frame pointer, all that needs to happen is to check
that the address does not point to above the current stack frame
(see Figure 9). This check is achieved by interspersing instructions
before the memory write happens. The patch requires inserting
instructions within the original function, as well as adding a new
part labelled overflow_detect.

The memory write originally actually was unsafe. It originated
from the following line of C code:

while ((buff[n++] = getchar()) != '\n');

Here, buff is a local array. The inserted check jumps to label
overflow_detect as soon as the above code would overwrite the
return address.

The above pattern can be generically applied to any memory
operand. It is, however, expensive in terms of running time. Miti-
gations are possible. First, in this specific example the check can
be achieved more efficiently by simply comparing register rdx to
value 0x60. That does not require the use of a temporary register. It
may be the case that the flags are not read after the original move,
so that storing/restoring the flags is unnecessary as well.

In general, one wants to 1.) do a pointer analysis which overap-
proximates the set of writes that are to be patched (e.g., writes with
an unknown base, or with an unknown addend), 2.) find an efficient
implementation for checking whether the write occurs within a
pre-specified region ofmemory, and 3.) intersperse that implementa-
tion into the binary. We have done these steps manually for a small
example: more automation would be interesting for future research.

Q5 (verification times):
Figure 10 shows verification times. All results have been obtained

on an M1 Pro machine with 32GB of memory. We would like to
stress that we make heavy use of parallelization. Within the veri-
fication process, Isabelle/HOL is capable of running all generated
theory files in parallel [39]. Each function corresponds to a theory
file, so all functions can be verified in parallel. This is necessary:
we run into memory issues for the larger examples if we load and
verify the entire certificate at once. We thus split up the certificate
into chunks and to prove each chunk in a separate process.

7 Related work
Decompilation has been a subject of research that has been around
almost as long as compilers have. The work done by Cifuentes [7]
forms the basis of most modern decompilers. She describes a de-
compilation pipeline that decouples the input architecture and the
output language from a universal decompilation module, that per-
forms operations like dataflow, type and control flow analysis. Most
modern decompilation and reverse engineering tools have adopted
this architecture.

A key observation is that generally decompilation is focused on
providing human understanding of the binary, rather than machine
understanding. Tools such as IDA-PRO1, Ghidra2, Binary Ninja3,

1https://hex-rays.com/ida-pro/
2https://ghidra-sre.org/
3https://binary.ninja

https://hex-rays.com/ida-pro/
https://ghidra-sre.org/
https://binary.ninja
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mov eax 0x4,
cmove eax, ebx
;; BEGIN MANUALLY INSERTED
push rax
mov rdi,rax
call myPatch
pop rax
;; END MANUALLY INSERTED
pop rbx
pop rbp
...
ret

(a) Patched Assembly

void myPatch (int conn_type) {
if (conn_type == SCHEME_HTTP) {

puts ("PATCH: exiting because of" \\
"insecure HTTP connection.");

exit(1);
}

}

(b) Source of Patch

Figure 8: Inserting a patch.

; BEGIN MANUALLY INSERTED
pushfq ; Store flags
push rax ; Store a temp register
lea rax, [rbp + rdx - 0x60] ; Load value of operand into temp register
cmp rax, rbp ; Compare operand to frame pointer
jae overflow_detect ; If above or equal, then error
pop rax ; Restore temp register
popfq ; Restore flags
; END MANUALLY INSERTED
mov byte [rbp + rdx - 0x60], CL ; The original instruction

Figure 9: Patch: restricting a memory write
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Figure 10: Verification Times

Radare24, RetDec [20], and SmartDec [13] each are focused on pro-
ducing a “source-like” representation of the original binary. Various
undecidable problems cause these decompilers to apply heuristics,
best-effort guesses or domain-specific knowledge during the lifting
process, or to introduce holes (undefined or unspecified behav-
iors). These problems include variable recovery, type inference,
control flow recovery, and function-interface recovery. The result

4https://rada.re/n/

is generally code that is as humanly readable as possible, but not
machine-readable. The purpose of these tools is human-in-the-loop
reverse engineering and binary analysis.

Recompilable IRs.Machine-readable means in this context that
the code at least is compilable. McSema translates x86-64 binaries to
the LLVM IR, and was arguably the first to produce a recompilable
higher-level IR. IDA-PRO is used for CFG generation (or other tools
can be plugged in), and from there individual instructions of the

https://rada.re/n/
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Tools Target IR Recompilability Patchability Validatable

IDA-PRO
Binary Ninja
Radare2
. . .

Human-readable source

McSema LLVM IR ✓
Ramblr Assembly ✓ ✓
FoxDec C ✓ ✓
This work NASM ✓ ✓ ✓

Table 2: Inexhaustive Overview of Related Disassemblers and Decompilers

basic blocks are translated to LLVM. Effectively, McSema imple-
ments a simulation of the original binary. It provides a datastructure
called State which simulates registers, a stack, and heap memory.
For example, a simple arithmetic instruction is translated to calling
an appropriate function that manipulates the current State object.
Functions need wrappers that map a McSema context to the native
context and conversely. We argue that the overhead induced by
this approach is large. In addition, this approach makes it hard to
construct an argument for soundness, which is not mentioned as a
desired characteristic to begin with. McSema does not do any form
of symbolization. For example, when recompiling, one has to fix
sections to specific addresses.

Patchable IRs. Symbolized assembly was studied by Wang et al.
and implemented in Ramblr [37]. Ramblr focuses on reassemblable
assembly code, first put forward in [38]. The fact that symbolization
enables patchability is posited there. Wang et al. are, to the best
of our knowledge, the first to apply testing to recompiled binaries,
and to report on numbers such as running time overhead (similar
to this paper, the overhead is negligible). Similar to this paper, they
confirm through testing that binaries have the same observational
behavior. Ramblr essentially is based on content classification, i.e.,
differentiating bytes in the binary as either code or data. Moreover,
it executes an intra-function data dependence analysis to determine
whether values are used as a pointer later on. Both these problems
are undecidable, which they explicitly admit: it is “an empirical
solution that works on many binaries whose integer distributions
roughly follow the pattern as presented”. We stress here that even
though this paper does not require a data dependence analysis
such as Ramblr, our approach does not escape the infeasibility of
content classification either (see Assumption 3 in Section 3 and the
treatment of dangling pointers). For both approaches, instructions
in the binary may be missed if they are erroneously considered
unreachable. Ramblr makes assumptions similar to the assumptions
discussed in Section 3. The key difference between our approach and
Ramblr is the production of a certificate that allows a formal proof
of correctness. Moreover, Ramblr does not scale, as also confirmed
by the authors of BinPointer [19] who could only successfully apply
it to micro-benchmarks.

Validatable IRs.Machine-readability is a prerequisite for the
generated IR to be mechanically proven to be sound. A relatively
small part of research in decompilation focuses on arguments for

soundness, be it formal or pencil-and-paper. Schwartz et al. [5]
present Phoenix, an x86 decompiler to C that guarantees that the
structural analysis portion of their decompiler is sound. This is
achieved by only using translation schemes that are semantics
preserving. Their work does not provide an explicit definition of
soundness, nor a proof (neither mechanized or pencil-and-paper).
Verbeek et al. [36] present FoxDec, a decompiler from x86-64 to C.
They employ formal methods to guarantee that their decompilation
results are sound. In addition, the generated C code is recompilable.
Their work has some severe restrictions: indirections are not al-
lowed, as are local arrays or passing local pointers. Moreover, their
technique introduces an overhead in terms of running time which
is sometimes as large as a factor 48.

Both these works share the common property that components
of the decompilation chain have been formally proven correct (e.g.,
control flow recovery). In contrast, our work treats both the de-
and the recompiler as a black-box. It argues that soundness means
that the recompiled binary can be proven equivalent to the origi-
nal. Akin to the dichotomy between verifying a compiler [21] and
doing translation validation [27, 29, 33], the approach to verifying
(steps of) a decompiler can be distinguished from “decompilation
validation” (our approach).

Translation validation has been used to check whether a higher-
level representation and a compiled executable are semantically
equivalent. However, translation validation considers the higher-
level artifact to be the ground truth; the source code provides infor-
mation on what the lower-level artifact must do. In decompilation,
the lower-level artifact is the ground truth. As a concrete example,
a typical problem in binary analysis is resolving indirections. If
the higher-level artifact is the ground truth, then resolving indi-
rections is possible by examining the source code to see, e.g., what
all cases of a switch statement are. However, if the lower-level
artifact is the ground truth, then indirections need to be resolved
by establishing binary-level invariants, a notoriously hard problem
in verification [9, 35]. We thus argue more generically that decom-
pilation validation is a different problem than compilation validation.

To summarize, we argue that this paper presents the first ap-
proach to lift binaries to an IR that is recompilable, patchable, and
formally validatable.
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8 Conclusion & Discussion
This paper presents an approach to lifting PIE x86-64 executables
to symbolized NASM. We demonstrate that this approach enables
use-cases related to binary-level patching. The lifted NASM comes
with a formal certificate, that can be loaded into the Isabelle/HOL
theorem prover. If the certificate is proven correct, the original and
the recompiled binary are Γ-equivalent.

Reflecting on the role of formal verification in this context, we
argue that on the one hand it drastically increases trustworthiness of
the lifted IR. This increases trustworthiness of downstream tools as
well, like binary verification, binary patching, security analyses and
further decompilation steps. On the other hand, it is not a panacea.
The nature of binaries is complex, as the execution of a binary is an
interplay between the binary itself and the operating system. This
work focuses on proving that the same computations are executed,
in the same order, and on the same data. However, truly proving
that two binaries are equivalent would require a full formal model of
the ELF format [18], or more generically, a full formalization of the
application binary interface (ABI) between binary and OS [23]. The
complexity of the ELF standard may prevent a complete full formal
model to ever be completed, but it would be interesting nevertheless
to develop formal models of components such as runtime linking
and process initialization.

In the approach presented in this paper, the correctness crite-
rion of an IR is that the IR can be recompiled back to the original
binary (modulo symbolization). We argue that for the subsequent
lifting steps in a larger decompilation chain, such a correctness
criterion is too restrictive. For example, once memory regions are
abstracted to variables, the recompiler has the freedom to decide
how to implement these variables. It no longer needs to recompile
back to the same implementation as the original. We argue that
to develop a complete formally verified decompiler from binary to
source code, the first step from binary to IR is virtually impossible
to prove correct. For that reason, this paper presents a “decompila-
tion validation” approach to validate that IR. However, subsequent
decompilation steps applied to this IR may each be formally verified
themselves. We thus envision a formally verified decompiler where
the first step from binary to NASM is achieved through validation,
but subsequent steps at higher levels of abstraction are achieved
through verified decompilation steps.
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