
Exceptional Interprocedural Control Flow Graphs
for x86-64 Binaries⋆

Joshua A. Bockenek1, Freek Verbeek1,2, and Binoy Ravindran1

1 Virginia Tech
2 Open University of The Netherlands

Abstract. Standard control flow graphs (CFGs) extracted from bina-
ries by state-of-the-art disassembly/decompilation tools do not include
information about exception-related control flow. However, such infor-
mation is useful when statically analyzing programs that utilize struc-
tured exceptions. To fill that gap, we propose the concept of Exceptional
Interprocedural Control Flow Graphs (EICFGs). These graphs extend
traditional CFGs by adding edges for stack unwinding, frame cleanup,
and try/catch behavior caused by thrown exceptions. We provide an
approach for generating EICFGs from x86-64 binaries featuring C++

exceptions. The approach is based on symbolically executing an abstract
semantics that includes binary-level exception-related function calls. We
validated our abstract semantics by generating concrete test cases that
were then evaluated using real binaries. We applied an implementation
of our approach to 341 off-the-shelf x86-64 binaries compiled from C++

as well as C and Fortran source code. From those binaries, we identified
2574 unique throws and successfully resolved the exceptional control flow
for every one of them. We show that resolving throws leads to increased
instruction reachability and uncovers edges not found by state-of-the-art
tools such as Ghidra.
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1 Introduction

Control flow graphs (CFGs) are key components in both compilation and analysis
of software. They provide information on the runtime execution of a program, i.e.,
which control flow paths are dynamically possible. Typically, they are constructed
during compilation using the source code as ground truth. In the field of binary
analysis, however, they must be reconstructed from a binary. This is a challenge,
since control flow transfers may be indirect, i.e., their jump target may be resolved
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at runtime. This makes generating a CFG an undecidable problem, as the exact
values of certain state parts can only be determined at runtime.

This problem is exacerbated when dealing with exceptional control flow,
induced mainly by the C++ throw and catch statements. The target of a throw,
i.e., to which instruction address the control flow is transferred after execution of
a throw statement, is decided dynamically at runtime. It is based on, among other
things, the current call/return stack, the current caught exception stack, and
low-level information pertaining to rethrows and catch statements. Moreover, it
inherently requires interprocedural analysis, as the function call history is relevant
for assessing the throws’ targets. Interprocedural analysis is challenging, as one
cannot simply isolate a function and do analysis, but must consider the binary
as a whole.

Existing state-of-the-art disassemblers/decompilers, such as IDA Pro, Ghidra,
and Binary Ninja, do not provide sufficient information on exceptional control
flow. Typically, they are able to extract exception information statically available
in binaries (e.g., landing pad locations). They can even provide interprocedural
control flow graphs. However, they do not perform the interprocedural static
analysis required for reconstructing exceptional control flow. That is, they cannot
trace the path from an exception throw site to the landing pad instructions that
exception goes to in the process of unwinding. CFGs under such analyses will
have throw sites as terminating locations with no outgoing edges.

This paper provides a tool for static, interprocedural, automated C++-
exception-aware control flow analysis on the binary level. That tool produces
Exceptional Interprocedural Control Flow Graphs (EICFGs), which document
the direct exception-handling-related components of the state of the program,
such as exception objects currently allocated, number of uncaught exceptions,
and which exceptions are currently in a caught state (see Sections 2 and 3).

Effectively, EICFGs expose control flow edges not found by other work.
The motivation behind exposing such edges is that it leads to more accurate
reachability analysis: instructions that were deemed unreachable may now be
considered reachable, or instructions that were considered reachable only through
a single path may now be considered reachable through other paths as well. In
general, we argue that improved binary-level reachability analysis is useful for
security analysis, verification, and patching. Some more concrete examples of
use-cases are:

– A disassembler/decompiler leverages reachability information to decide which
parts of the binary are lifted. The information stored in EICFGs enable a
decompiler to lift paths that were not found by existing tools.

– Binary-level verification, be it theorem proving, symbolic execution, or model-
checking, typically aims to be overapproximative. This requires insight into
all possible execution paths. An EICFG can aid such verification efforts.

– ROP-programming aims at finding executable sequences (gadgets) that end
with an instruction that modifies control-flow. More insight into the possible
execution paths of a binary increases may lead to a larger attack surface.
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The tool itself targets stripped binaries using C++ exception handling that
were compiled for the x86-64 instruction set architecture (ISA) and System V
application binary interface (ABI). We assume that external calls do not produce
exceptions themselves. We also do not model setjmp/longjmp.

A desired characteristic is that the produced EICFGs are overapproximative:
every concrete path, i.e., every path possible during dynamic execution, is in-
cluded in the EICFG. We informally – through test case generation – argue that
the abstract semantics that are symbolically executed overapproximate the con-
crete semantics [2]. However, it may be the case that an indirection is unresolved,
in which case not all paths are explored. In those cases, the CFGs are clearly
annotated. We thus argue that EICFGs are overapproximative modulo unresolved
indirections. To strengthen this claim, we validated our abstract transition rules
for exception handling against the concrete implementations of the corresponding
library functions (Section 4). This was done by generating abstract states, con-
cretization to a concrete CPU state, running the function under validation in an
instrumented binary, observing the CPU state, and verifying that the concrete
transition is correctly contained in the abstract transition.

We applied the tool to 341 off-the-shelf x86-64 binaries compiled from C++,
C, and Fortran source code (Section 5). The implemented tool was able to identify
and trace 2574 unique throws. Dealing with exceptional control flow can increase
average instruction reachability by 14 instructions per unique throw, with 188
average unwind edges in the possible unwinding paths from each throw. Those
edges are ones tools such as Ghidra do not produce.

All code, scripts, and tested binaries are publicly available available at https:
//doi.org/10.5281/zenodo.11081942.

2 EICFGs

A normal CFG provides users with information on control flow transfers induced
by jumps and calls. Given a specific jump or call instruction, one can look up in
the CFG the set of successor instructions and a state predicate on which that
successor selection is based. Such state predicates are typically represented by
expressions over flags (for example, CF and ZF for the carry and zero flag) or a
jump table calculation.

A summarized reproduction of the interprocedural control flow graph gener-
ated by Ghidra for an example program can be seen in Figure 2, generated from
a binary compiled from the source code in Figure 1. In this example, function
main can indirectly call both functions foo and bar. Each of these two can throw
an exception, and if that happens, main can either rethrow that exception (the
red box) or normally return (the green box).

While Ghidra can identify catch and cleanup landing pads (boxes LP in
Figure 2), it cannot show that the throws will unwind there. IDA Pro and
Binary Ninja produce similar results; they can identify landing pad locations
intraprocedurally, but they do not trace exceptional control flow interprocedurally.

https://doi.org/10.5281/zenodo.11081942
https://doi.org/10.5281/zenodo.11081942
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We have verified that this holds for more complicated programs as well (some of
the programs used in Section 5).

In contrast, we produce an EICFG which augments the normal CFG with
edges related to exceptional control flow (the dashed edges in Figure 2). These
edges actually form a series of edges that lead from a throw to its landing pad,
with labels containing predicates over, e.g., the current caught exception stack.
Moreover, while not claiming it as a contribution in itself, we have taken care to
resolve indirections whenever possible. The edge from main to foo and bar are
due to indirect calls. Neither Ghidra, IDA-PRO or Binary Ninja generated these
edges for this example.

int (*const FOOBAR [])(int) = {foo , bar};

int main(int argc , char* argv []) {
try {

if (argc < 2)
return FOOBAR[argc](argc);

}
catch (const std:: exception &) {

if (argc < 0)
throw;

else
return 0;

}
}

Fig. 1. Part of the C++ source code that was compiled to binary

Instead of simple labels, EICFGs use exceptional state predicates as labels.
Informally, the information on which exceptional control flow is based is:

1. the exception object, e.g., type info and rethrown state;
2. the current set of return addresses on the stack;
3. the current uncaught exception count;
4. the current caught exception stack; and
5. a static address (landing pad) table for the unwinding process.

Exception type info is used to determine which catch blocks, if any, are applicable
to the exception being thrown. Rethrown status is necessary when determining
behavior when dealing with the binary equivalent of an argumentless throw. The
return address stack is necessary to provide context for unwinding. The uncaught
exception count keeps track of how many thrown exceptions are currently un-
caught. This is useful for diagnostic information. Next, the caught exception
stack provides information to set up implicit rethrowing. Finally, the landing pad
table (LPT) maps from potential unwind spots in a binary to locations where
unwinding can exit.
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main

entry

return

throwLP

foo

entry return

LP

Fig. 2. Summarized view of a subpart of the control flow of Figure 1. Each box is itself
a control flow graph over various instructions. The thick black edges are also generated
by existing works, the dashed edges are not.

Definition 1. An EICFG is a directed graph with instruction addresses as ver-
tices and edges labelled with exceptional state predicates. There is an edge between
instruction addresses a0 and a1 with label P if the instruction at address a0 leads
to instruction address a1 for any state that satisfies predicate P .

Some of the additional information provided by an EICFG is illustrated in
Figure 3, which models the process of throwing an exception from the same
example program as Figure 2. The representation in the figure indicates the
process of unwinding from one throw site in the control flow graph to a try-catch
block or cleanup landing pad. This path was triggered by the snippet of assembly
shown in Figure 4, which allocates (0x125b), initializes (0x126d), and throws
(0x1286) an exception. The landing pad table of the binary, LPT, directs the
unwinding process: when stack unwinding reaches address i and j ∈ LPT(i),
control flow branches to address j. Otherwise, another frame is popped off
the stack. This will be elaborated on in Section 3.2. For this example, we get
unwinding from address (0x1286) to 0x137e to 0x138b.

Due to overapproximation, there are two possible paths from that point. One
is the path for an exception object that is not of the caught type, some checks
of which occur via the assembly instructions 0x138f and 0x1393 of Listing 1.1.
This path results in unwinding being resumed (0x1398) and leads to a bad
termination case at instruction 0x116e. The other path continues from node
0x139d. It eventually leads to 0x116e from 0x13dd (intervening nodes elided).
This is a good termination case as reaching that halting instruction occurred
outside unwinding.

Resolving of indirections is shown in Figure 5. Whenever an indirection occurs,
we detect whether the state is reached only via a conditional jump that positively
bounds an index. If so, we concretize by all possible values for that index. In the
given example, we detect values being read from a table with an index j strictly
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0x1286

0x137e

stack = [0x137e, 0x116e]
LPT(0x1286) = ∅

0x138b–0x1393

stack = [0x116e]
LPT(0x137e) = {0x138b}

0x1395–0x1398

0x116e

stack = [0x116e]
LPT(0x1398) = ∅

0x139d

0x13dd

stack = [0x116e]

0x116e

stack = [0x116e]

!ZF
ZF

Fig. 3. EICFG fragment.

bounded by 2. This results in a computable indirection, and resolve an indirect
call to either foo or bar.

3 Technical Formulation

The derivation of EICFGs from a binary requires four additional things: 1.) a
static landing pad table, 2.) an abstract state model, 3.) an abstract transition
relation, and 4.) a symbolic execution engine to apply the rules making up our
abstract transition relation. We describe those here,using the following types: B, N,
Z, denote Boolean, natural and integral numbers respectively. V denotes symbolic
expressions, which may be ⊤, indicating any or an unknown or undefined value.
P denotes immediate 64-bit addresses. R denotes registers. W denotes exception
IDs, and finally we have an enumeration T := {⊤, Good, Bad} for the program
termination type.

3.1 Landing Pad Table

This information describes how unwinding should proceed given the unwinding
reaching specific locations in a binary. It is extracted from the Common Informa-
tion Entries (CIEs), Frame Description Entries (FDEs), and language-specific
data areas (LSDAs) of the binary under test and assumed to be correct. In
our current formulation, an entry in the catch table is merely a pointer to the
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125b: call 10d0 <__cxa_allocate_exception >
1260: mov rbx ,rax
1263: lea rsi ,[rip+0xd9b] # 2005
126a: mov rdi ,rbx
126d: call 10e0 #std:: domain_error init
1272: mov rax ,QWORD PTR [rip+0x2d4f]
1279: mov rdx ,rax
127c: lea rsi ,[rip+0x2abd] # 3d40
1283: mov rdi ,rbx
1286: call 1120 <__cxa_throw >
...
129c: call 10f0 <__cxa_free_exception >

Fig. 4. Assembly corresponding to Figure 3.

0x135f

[0x1362,0x137a]

0x137c

j = 0

[0x12b5,0x12cb]

call tbl[0]

[0x1362,0x137a]

0x137c

j = 1

[0x1229,0x123f]

call tbl[1]

j = 0
j = 1

Fig. 5. Identifying indirection.

corresponding landing pad for this entry. While type pointers and exception
specifications exist within the LSDAs as well, we do not currently utilize that
information.

Thrown exceptions in C++ can be caught by catch blocks. Individual stack
frames may require cleanup during the process of unwinding as well. The addresses
of those catch blocks and cleanup routines are called landing pads. To accomplish
reaching those addresses during unwinding, we require a landing pad table.

Definition 2. A landing pad table LPT is a static map from instruction addresses
to set of possible landing pads. Formally, LPTs have type P → 2P.

Currently, we overapproximate and do not include exception type when deter-
mining landing pads.

Example 1. One of our running example landing pad entries is LPT(0x137e) =
{0x138b}. Thus, when an unwinding routine reaches instruction 0x137e, that
routine will jump to 0x138b.

Exception Objects Exceptions of type E are records with named fields.
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Listing 1.1. Example throw landing pad.
1387: mov eax , ebx
1389: jmp 13d7
138f: cmp rdx , 0x1 # check for matching exception
1393: je 139d
1395: mov rdi , rax
1398: call _Unwind_Resume

# exception not handled by this catch block
139d: mov rdi , rax
13a0: call __cxa_begin_catch # start of catch block
13a5: mov QWORD PTR [rbp -0x18], rax
13a9: cmp DWORD PTR [rbp -0x24], 0x0
13ad: jns 13b4
13af: call __cxa_rethrow # exception rethrow
13b4: mov ebx , 0x0
13b9: call __cxa_end_catch # end of catch block
13be: jmp 1387
13c0: endbr64
...
13d7: # normally return

Definition 3.

E :=

{
rethrown : B
handlerCount : Z

This record has two fields. The Boolean field rethrown indicates the rethrown
status of the exception. Natural field handlerCount stores the current count of
catch block handlers for the exception.

3.2 Abstract State

Our exception-containing abstract states, type Σ, are records as well, with the
following fields:

rmap: the register map This field has type R → V. As previously stated,
reading and writing registers smaller than 64 bits (e.g. ebp versus rbp) requires
bit masking and shifting the underlying 64-bit register’s value. This behavior
is integrated into our symbolic execution engine. Larger registers (e.g. xmm and
other vector registers) exist as operands in our instruction representation but are
not used for state updates or reads.

stack: the return address stack Maintaining the current list of return addresses
is necessary in order to perform stack unwinding and handle thrown exceptions.
It is also helpful in detecting recursion. We make use of standard push/pop/peek
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functions. For the initial state, we have an empty stack. A call pushes the
address of the next instruction to the stack, a ret pops. Some functions, such as
__libc_start_main are given special treatment.

emap: the exception mapping This field has type W → E. When an exception
is created, it receives an ID based on its creation location and is stored in emap
with that ID as the key.

terminated: the termination state This field has type T. It defaults to
value ⊤, indicating the program or function has not terminated yet. When a
path of execution completes, it is set to either Good or Bad, indicating either
normal or abnormal termination, respectively. We treat cases where an exception
propagates to the top of the stack without being caught to be such “bad” cases.

Auxiliary exception variables Σ also contains a count of the number of
currently-uncaught exceptions (uncaught : N) and a stack of the currently-caught
exception IDs (caught : [W]). These fields are manipulated and used during entry
to and exit from catch blocks as well as when rethrowing exceptions. This handling
comes into play when dealing with nested catch blocks, exceptions (re)thrown
within such blocks, etc.

Definition 4. The type of abstract states, notation Σ, is a record with fields:

rmap : R → V stack : [P] emap : W → E
terminated : T uncaught : N caught : [W]

To ease register references, for some state σ and named register r, the notation
σ.r is shorthand for σ. rmap(r), e.g. σ.rdi ≡ σ. rmap(rdi).

3.3 Abstract Transition Rules

We define an abstract transition relation over abstract states. For various regular
instructions we define semantics (e.g., mov and add). There is no need to provide
semantics for the entire instruction set, as we can overapproximate values with ⊤
for irrelevant instructions. Conditional jumps are modeled non-deterministically.
Unknown external functions are overapproximated by trashing the state according
to a calling convention. Recursion is treated as follows: assume a call to a function
inside the binary for some state σ. Then, if the return address to be pushed
on the stack is already in σ.stack, we instead treat that call as an unmodeled
external call and continue execution past it.
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Figure 6 provides a set of rules modeling exception-related ABI calls. The
following abbreviations are utilized in those rules:

handler(id , σ) ≡ σ. emap(id).handlerCount

rethrown(id , σ) ≡ σ. emap(id).rethrown

pushStack(fr , σ, σ′) ≡ σ′.stack = push(fr , σ.stack)

popStack(σ, σ′) ≡ σ′.stack = pop(σ.stack)

pushCaught(c, σ, σ′) ≡ σ′.caught = push(c, σ.caught)

popCaught(σ, σ′) ≡ σ′.caught = pop(σ.caught)

Notation for increment/etc.:

handler(id , σ′)++ ≡ handler(id , σ′) = handler(id , σ) + 1

handler(id , σ′)⊕ ≡ handler(id , σ′) = |handler(id , σ)|+ 1

Notation X−− follows the same concept, but the alternate for decrementing is
handler(id , σ′)⊖ ≡ handler(id , σ′) = − sign(handler(id , σ))∗(|handler(id , σ)|−1).
As a special case, 0⊖ = 0.

Non-Unwinding Rules Figure 6a shows the rule for the special starting
function that initiates the runtime used for standard features of C and C++,
__libc_start_main. For this rule, we require the post-state’s current instruction
pointer be restricted to whatever was previously stored in rdi, rcx, or r8. We
also require the stored return address to be on the top of a stack frame.

Next, Figure 6b illustrates the rule for function __cxa_allocate_exception.
Our modeling assumes a system where virtual memory allocations always succeed
(and the runtime terminates programs when they use up too much memory). It
results in an exception object added to the exception map with the post-state
σ′’s instruction pointer as its ID. The object starts in a non-rethrown state and
with no handlers. The ID is also set as the return value of the function in σ′.rax.

Example 2. After instruction 0x125b of Figure 4, we have: σ′.rax = 0x1260,
σ′. emap(0x1260).handlerCount = 0, and ¬σ′. emap(0x1260).rethrown.

The rule in Figure 6c is for the memory-related function __cxa_free_exception.
This rule ensures the absence of an exception in the exception map based on
the given ID. At our level of abstraction, the function _Unwind_DeleteException
exhibits the same semantics and is thus elided.

Example 3. Consider instruction 0x129c of Figure 4. The result of this instruction
is σ′. emap = ∅.

The rules in Figures 6d and 6e define __cxa_begin_catch behavior for different
cases. For an exception not already caught, the associated rule pushes it onto the
caught-exception stack. The rule for already-caught exceptions does not do this.
However, both rules increment that exception’s handler count and decrement the
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σ′.rip ∈ σ.{rdi, rcx, r8}
pushStack(σ.rip+ 5, σ, σ′)

σ
A−→ σ′

(a) __libc_start_main

id = σ′.rip
σ′.rax = id

σ′. emap(id) = e
¬e.rethrown

σ
A−→ σ′

(b) __cxa_allocate_exception

σ′. emap(σ.rdi) = ⊤

σ
A−→ σ′

(c) __cxa_free_exception

id = σ.rdi
id ̸∈ σ.caught

handler(id , σ′)⊕
pushCaught(id , σ, σ′)
σ′.uncaught−−

σ
A−→ σ′

(d) __cxa_begin_catch (not already caught)

id = σ.rdi
id ∈ σ.caught

handler(id , σ′)⊕
σ′.uncaught−−

σ
A−→ σ′

(e) __cxa_begin_catch (already caught)

id = peek(σ.caught)
handler(id , σ) = 1
rethrown(id , σ)

handler(id , σ′) = 1
¬ rethrown(id , σ′)
popCaught(σ, σ′)

σ
A−→ σ′

(f) __cxa_end_catch (have caughts, last handler,
rethrown)

id = peek(σ.caught)
handler(id , σ) = 1
¬ rethrown(id , σ)

handler(id , σ′) = 1
σ′. emap(id) = ⊤
popCaught(σ, σ′)

σ
A−→ σ′

(g) __cxa_end_catch (have caughts, last handler, not
rethrown)

σ.caught = []
σ′.terminated = Bad

σ
A−→ σ′

(h) __cxa_rethrow alt

σ
U+

==⇒ σ′

σ′.rax = σ.rdi

σ
A−→ σ′

(i) _Unwind_Resume (LP(s))

σ
U−
==⇒ σ′

σ′.terminated = Bad

σ
A−→ σ′

(j) _Unwind_Resume (no LPs)

σ
U+

==⇒ σ′

σ′.uncaught++
σ′.rax = σ.rdi

σ
A−→ σ′

(k) __cxa_throw
(LP(s))

σ
U−
==⇒ σ′

σ′.terminated = Bad

σ
A−→ σ′

(l) __cxa_throw (no
LPs)

σ
U+

==⇒ σ′

id = peek(σ.caught)

σ′.uncaught++
handler(id , σ′)⊖
rethrown(id , σ′)
σ′.rax = id

σ
A−→ σ′

(m) __cxa_rethrow (caught+LP(s))

Fig. 6. Abstract transition rules (unchanged state parts mostly elided).
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state’s count of uncaught exceptions. Though not listed, there is also a rule for
an ID not currently in the exception map. That rule operates the same as our
(elided) rule for unmodeled external calls. This allows for safe overapproximation.

Example 4. Consider instruction 0x13a0 of Listing 1.1. Assuming the existence
of a valid exception object with ID id that was just thrown, the post-state σ′

will satisfy: handler(id , σ′) = 1, σ′.caught = [id ], and σ′.uncaught = 0.

The rules listed in Figures 6f and 6g then define some __cxa_end_catch
behavior. The first rule applies when an exception ID is available on top of the
caught stack, there are no more handlers for the corresponding exception object,
and it is being rethrown. In this case, it is popped off the caught stack and no
longer treated as being rethrown. The second rule applies when an exception is
available, has no more handlers, and is not being rethrown. In that case, it is
popped off the caught stack and removed from the exception map. Not shown
is the rule for an exception that still has handlers remaining. In that case, its
handler count is decremented but no other changes are made. Additionally, the
case for an empty σ.caught again operates as an unmodeled external call for the
sake of overapproximation.

Example 5. Consider instruction 0x13b9 of Listing 1.1. Assume the statements
in Example 4 hold for the pre-state. Then, the post-state σ′ for that instruction
will satisfy σ′. emap(id) = ⊤ and σ′.caught = [].

Unwinding Rules In case of stack unwinding, the stack is recursively popped
until one of two conditions occurs: a landing path is found or not. We respectively

use U+

==⇒ and U−

==⇒ to indicate the compound stack unwinding transition from a
state until one of those conditions is met.

Example 6. Assume σ.stack = [0x116e]. Then, for σ U−→ σ′ to hold, we must have
σ′.stack = [] and σ′.rip = 0x116e.

Figures 6i and 6j show the simplest unwinding function rules, those for
_Unwind_Resume. The main addition to the general unwinding transition is that,
when landing pads are found, the original function argument (σ.rdi) is preserved
in the result state’s return register (σ′.rax). This models the concrete handling
for carrying through exceptions during unwinding.

Example 7. Consider instruction 0x1398 of Listing 1.1. As previously described
in Section 2, this instruction is intended to continue unwinding for exceptions
that do not satisfy the source code’s catch type specification. Assuming no more
applicable landing pad table entries, the only valid post-states for the transition
here match σ′.stack = [] and σ′.terminated = Bad.

The rules for the initiating function __cxa_throw, shown in Figures 6k and 6l,
expand on those for _Unwind_Resume. They add the condition that the post-state’s
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uncaught exception count is incremented. As before, given our level of abstraction
the function _Unwind_RaiseException is semantically equivalent to the base throw
function and thus shares its rules.

Example 8. Consider instruction 0x1286 of Figure 4. We previously stepped
through the process of throwing using this instruction in Section 2, so we merely
state the results here. As this is the first throw at this time, we have σ′.uncaught =
1. Additionally, the unwinding process stops for σ′.rip ∈ LPT(0x137e) =
{0x138b}, giving us σ′.rip = 0x138b.

The rules for __cxa_rethrow in Figures 6h and 6m add a twist by utilizing
the current caught-exception stack. When an exception object ID is available
on the top of the caught stack, unwinding proceeds as usual. Furthermore, the
corresponding exception object is marked as being rethrown and its ID is stored
in rax for later usage. By contrast, when no caught exception objects are available,
__cxa_rethrow must lead to an abnormal termination for strict modeling. However,
that second rule can be relaxed for additional overapproximation by using the
_Unwind_Resume rules instead.

Example 9. Consider instruction 0x13af of Listing 1.1. Assume: σ.caught = [id ],
σ. emap(id) = e, and LPT(0x13af) = {0x13c0}. Then we end up with: σ′.rip =
0x13c0 and σ′. emap(id).rethrown.

Additional rules exist for the process of forced unwinding, or manual stack un-
winding. Those are summarized here, starting with _Unwind_ForcedUnwind. That
function functions similarly to __cxa_throw (Figures 6k and 6l). However, instead
of stopping based on landing pad table information, it executes the function
stored in σ.rsi in each frame and uses the result to determine when to stop.
_Unwind_DeleteException functions like cxa_free_exception (Figure 6c) at the end
of that process. The helper func _Unwind_GetIP stores the current frame’s instruc-
tion pointer in σ′.rax. Finally, the other helper function _Unwind_GetRegionStart
stores the current procedure fragment’s starting address in σ′.rax.

3.4 Symbolic Execution

We perform symbolic execution by application of the rules making up our abstract
transition relation. The symbolic execution engine was developped in Haskell,
specifically tailored for this purpose. For some initial abstract state σ0, σ0.rip is
either manually provided or obtained from the binary’s Executable and Linking
Format (ELF) info. Then we iteratively fetch the instruction at that address,
increment rip appropriately, and apply the applicable abstract transition rule
to obtain successor states. If the transition rule results in multiple possible
continuing states, we apply the symbolic execution step to each successor state.
If no non-terminating states result, this path of execution ends.

To prevent infinite loops and alleviate some of the state space issues that
can occur with such non-deterministic evaluation, we provide a join operation.
This join operation is focused on exceptional state. From Σ it preserves emap,
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uncaught, and caught. To maintain contextual awareness, it also preserves rip,
stack, and terminated. As an implementation detail, it also includes the temporary
indices used by our jump table heuristic to ensure proper separation. All other
state parts are combined, with priority given to the first equivalent state produced.
For a more aggressive join, emap, uncaught, and caught can be excluded from the
preserved state parts. The abstract transition rules are also simplified to support
this exclusion.

3.5 Argument for Overapproximation

We consider a formal definition of the concrete transition rules our abstract ones
overapproximate outside the scope of this paper. This is because our abstraction
focuses on the domain of exceptional control flow in terms of its ABI-level
definition. By contrast, concrete rules require a concrete implementation. Instead,
we provide an informal argument for why our abstract transition rules are
overapproximative.

First, for normal (non-exception-related) assembly instructions, our abstract
transition rules default to assigning ⊤ to destination operands, overapproximating
their effect. Only those instructions whose arguments affect exception- and stack-
related behavior as well as global memory operations receive full modeling.
They include mov and its relatives, push+pop and related instructions, and basic
arithmetic/bitwise instructions. If we did not model those instructions, we could
lose too much information concerning exceptional or even regular control flow.

Second, for exception-related function calls, the semantics in Figure 6 pur-
posefully omit information from the abstract state. An example is the type of
the exception being allocated. The abstract step function, then, considers all
possible next states for any exception type.

With respect to indirections, we deploy a tactic for resolving them that,
if successful, then it is overapproximative. Our tactic aims to find a program
point (i.e., an instruction address) from which a variant of under-constrained and
overapproximative symbolic execution [8] is executed from that program point
up to the indirection. If the resulting symbolic state provides a finite bound to
the set of jump targets of the indirection, the indirection is marked as resolved.
Otherwise, it is deemed unresolvable.

In the case of unresolvable indirection, we do not apply additional heuristics
or guesses. Instead, we stop further exploration at the indirection, if a jump, and
clearly annotate the output accordingly. Unresolved indirect calls are treated
as unmodeled external calls, but the same principle applies. We thus informally
argue that the produced EICFG is overapproximative modulo unresolved indirec-
tions. If the EICFG is not annotated with any unresolved indirections, it is an
overapproximation.

4 Validation

To increase trustworthiness, we validated some of our abstract transition rules
against the corresponding real-world implementations. Specifically, we generated
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abstract states σ, and validated that:

σ
A−→ σ′ ∧ γ(σ)

C−→ s′ =⇒ α(s′) = σ′ (1)

Here α and γ denote abstraction and concretization functions (from the field of
abstract interpretation [3]), and C−→ denotes concrete execution.

Abstract states σ are obtained through via test case generation [1]. For each
rule under validation, we generated 10 000 arbitrary initial abstract states (σ)
and then applied the rule to obtain the corresponding abstract post states (σ′).
Then, using a test harness implemented as a combination of Python and the GNU
Project debugger (GDB) scripts, we ran constructed real-world binaries featuring
the desired concrete functions. The usage of GDB allowed easy interceding at
specific points in the binaries in order to set up the initial state and extract the
state after the step. Function γ operates before the concrete library function is
executed, setting the state parts in Table 1 to their test case values. Function α
operates after the concrete library function is executed, extracting the listed state
parts from the concrete program state. The test harness then verifies that the
abstracted state parts match the expected ones generated previously, satisfying
Equation (1). Table 1 shows our validation status.

Table 1. Validated state parts.

Rule rip in/out regs handlerCount uncaught handlerSwitchValue caught

__cxa_throw ✓ ✓ ✓ ✓
__cxa_begin_catch ✓ ✓ ✓ ✓ ✓
__cxa_end_catch ✓ N/A ✓ ✓ ✓ Partial
__cxa_rethrow ✓ ✓ ✓ ✓ Partial
_Unwind_Resume ✓ ✓ ✓ ✓

Our constructed test programs are designed to be minimal but still call the
specific library functions we provided abstract transition rules for. To easily read
and write memory using GDB, we provided dummy versions of certain structs.
Specifically, the hidden library structs for individual exception objects as well as
global exception information. To utilize those structs within GDB, the programs
must be built in debug mode.

4.1 Concretization and Abstraction

Next, the abstract start and end states are generated by a small wrapper around
our abstract transition rules. We used components of the property testing library
QuickCheck [1] to instrument the start state generation. The initial starting
addresses are defined by the binary versions of the above-mentioned test programs.
The end state generation is performed by applying a single step of our methodology

https://www.sourceware.org/gdb/
https://www.sourceware.org/gdb/
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to those test programs using those start states. The start states as well as the
end states for each step are then exported for use by the test harness.

The concretization and abstraction functions γ and α are part of that test
harness. As in abstract interpretation, they interface between the generated
abstract states and the concrete memory layouts mentioned above. Both functions
operate via GDB breakpoints that are set depending on the rule under test.
Function γ operates before the concrete library function is executed, setting the
state parts in Table 1 to their test case values. Function α operates after the
concrete library function is executed, extracting the listed state parts from the
concrete program state after the library function is executed. The test harness then
verifies that the abstracted end state parts match the expected ones generated
previously, satisfying Equation (1).

4.2 Observations and Challenges

During the process of this validation, we uncovered several implementation quirks
that were not obvious. For example, the field handlerCount is actually a signed
integer. This means that, when generating initial states, a negative value may
be produced. As it turns out, the concrete implementation of __cxa_begin_catch
takes the absolute value of negative handler counts supplied to it before increment-
ing that value. __cxa_rethrow performs a similar, but stranger, transformation.
It decreases the magnitude by one, then inverts the sign; if the magnitude is 0,
handlerCount is unchanged. The implementation of our abstract transition rules
was updated to reflect those unearthed quirks.

We also did not cover those cases where an exception does not get caught
and results in program termination due to stack unwinding. This is because we
were unable to easily check the desired state parts in such cases. Similarly, we
could not validate the rip modification of the function _Unwind_Resume. When
running in GDB with our test program constructed to utilize _Unwind_Resume,
handler switch value manipulation is required to trigger that path. That in itself
is not necessarily an issue, but when that path is taken, control flow is ultimately
redirected to the landing pad for the catch block that leads to the _Unwind_Resume
rather than an appropriate parent landing pad. This prevents us from validating
the target landing pad (or lack thereof) for that function (i.e. σ′.rip). However,
we were still able to validate the other exceptional state components manipulated
by that function.

5 Experimental Results

Here we present the results of generating EICFGs for 341 real-world programs
and libraries. These programs and libraries have a variety of sizes and use cases
and were sourced from places like GitHub and the Advanced Package Tool (APT)
repositories. 49 of these programs utilize C++ exception handling (several despite
the lack of exception handling tables) while all have been compiled for the x86-64
ISA and the System V ABI. The EICFG generation for each binary was executed
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on a server with four Intel® Xeon® E7-8890v4 CPUs (for a total of 96 cores)
running at 2.20GHz with 252GiB of RAM. The server’s OS was Ubuntu 18.04.5
LTS. Execution timeout was set to eight hours.

Ideally we would directly compare the number of edges found by our tool with
the number of edges found by related work. That, however, does not give insight
into what is gained by generating EICFGs. Existing tools, such as Ghidra, IDA
Pro, and Binary Ninja produce fewer edges related to interprocedural exceptional
control flow. However, they may produce more edges as they apply heuristics,
pattern recognition, and best-guesses to resolve indirections.

We therefore directly compare the number of novel edges that are found
using our approach versus an approach that does not consider exceptional control
flow. This is a baseline comparison: a summary of the results comparing EICFG
generation to the results obtained by running our tool with exception handling
disabled (see Table 2). That version treats throw-related functions as terminating
functions, while catch-related functions were treated as no-ops.

Table 2. Case study results.

Absolute Numbers Baseline
Comparison

Groups Binaries Instructions Unwind
Edges

Unique
Throws

Caught
Throws

Time
(s)

Mem
(GB)

Instruction
Differential

NASA 13/14 1742K 1410 167 136 5056 36 1027
Xen 82/90 181K 0 0 0 112 1 0
Magick 15/17 172K 14 14 2 73 1 15
Cups 163/164 317K 3938 33 0 4049 2 0
Other 18/23 763K 63 260 830 526 5521 20 11 766
caf 5/6 632K 7952 466 254 918 12 4251
art 1/4 57K 216 31 30 151 10 1885
audio 5/7 100K 49 199 523 380 639 8 8509
drives 3/3 21K 21 683 69 61 273 6 674
games 3/7 35K 4081 260 254 55 1 3759
science 1/1 23K 3567 94 92 43 3 3009
tasking 1/1 23K 6 4 3 359 17 119
torrent 1/5 18K 328 948 83 76 4306 243 1195

311/341 4089K 484 274 2574 1814 21 447 30 36 200

30 of the binaries we analyzed are not included in the table as the tool ran
out of of memory or timed out due to state space explosion, in one case just in
the baseline version. We identified 2574 unique throws and traced the exceptional
control flow of each one. Based on our analysis, we were able to identify 760 of
them as uncaught; the remaining 1814 all had a potential catch block in their
unwinding path. On average, dealing with exceptional control flow can increase
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coverage of reachable instructions by 14 instructions per unique throw, with each
throw averaging 188 edges in the potential unwinding paths from that throw.
Those edges are ones tools such as Ghidra do not produce.

The Xen binaries exhibited no change, as none contained any exceptional con-
trol flow. We have decided to cover some non-trivial binaries without exceptional
behavior as well, to validate that our approach never decreases the number of
edges found. Thus, other than the time it takes to run EICFG generation, there
is no cost.

6 Related Work

Bottom-Up Approaches: Decompilers and Disassemblers. We provide a
summary of works in Table 3. The table describes whether or not the works do
intra- or interprocedural exception analysis and if so, if it is static or dynamic.
Static approaches, such as the one presented in this paper, typically aim for
overapproximation. They utilize abstraction or other methods to model paths
symbolically. In contrast, dynamic approaches are inherently underapproximative.
This is because they rely on concrete runtime behavior and evaluating all possible
concrete paths is infeasible.

Table 3. Bottom-up Exceptional Analysis Comparisons

Program Intraprocedural† Interprocedural‡ URL

This work Statically Statically
Binary Ninja Statically Dynamically https://binary.ninja
IDA Pro Statically Dynamically https://hex-rays.com/ida-pro/
Ghidra Statically Dynamically https://ghidra-sre.org
McSema Statically No https://github.com/lifting-bits/mcsema
RetDec Unknown No https://github.com/avast/retdec

† Can it identify the landing pads in a function?
‡ Can it trace from (re)throw to landing pad?

While Binary Ninja, IDA Pro, and Ghidra all support some form of in-
traprocedural exception handling analysis, they can only perform interprocedural
exception handling analysis dynamically via debugging. For example, Ghidra
provides default, platform-dependent analyses that extract try-catch block infor-
mation and other landing pad information for exception handling. However, it
does not provide unwinding control flow in the generated block/call graphs, only
cross-references for the LPT. This means that it can identify landing pads and
analyze the code following them, but it cannot identify the exceptions that will
reach them. Its built-in debugger that can perform unwinding is also ultimately
just an interface to external, dynamic debugging tools such as GDB or LLDB,

https://binary.ninja
https://hex-rays.com/ida-pro/
https://ghidra-sre.org
https://github.com/lifting-bits/mcsema
https://github.com/avast/retdec
https://lldb.llvm.org/
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which perform dynamic analysis and instrumentation. Traces are also supported,
but those require the program to have been run previously.

McSema is an executable lifter: It lifts machine code to LLVM bitcode. It pro-
vides intraprocedural exception analysis by generating the LLVM representation
for exception landing pads. However, it does not perform interprocedural analysis
as it merely lifts to LLVM bitcode, rather than tracing the execution of excep-
tions from throw site to landing pad. RetDec functions similarly to McSema as a
decompiler-to-LLVM, though it also supports C output. However, we could not
find information about its ability, or lack thereof, to deal with exception handling.
As with McSema, it does not perform interprocedural exception analysis.

Top-Down Approaches. By contrast, there are tools that analyze exceptions
from the source-code side [7,6,9]. This prevents the analysis of legacy code without
source but allows for better static analysis during development, or even formal
proofs of correctness of the exceptional semantics.

Hutton and Write [4] provided basic formal semantics for source-level C++-
like exceptions. They accompanied this with a compiler for a small language with
exceptions and a proof of correctness of that compilation. This is different from
our approach as we do not aim to verify the correctness of exceptional behavior
due to our lack of ground truth (source code or some program specification).
Additionally, Prabhu et al. [7] provide source-level generation of interprocedural
exception control-flow graphs (IECFGs) for C++ exceptions. These IECFGs are
much like our EICFGs, but extracted from source code instead. Unlike our work,
however, IECFGs are used to eliminate exceptions when compiling to a binary
to make static analysis easier. They cannot be used to analyze already-compiled
programs with exceptions. Jiang et al. [5] used the additional edges exposed
by IECFGs to design test cases for path testing and branch testing that take
exceptional behavior into account.

Zhang et al. provide semantics of exceptional control flow of C++ source
code [9], and show how symbolic execution of their semantics can be used to
discover exception handling bugs in real-life open-source software such as a JSON
parser and an SQL server. They argue that the number of edges in a call graph
increases by 22% when exception handling is taken into account, and note that
the density of exception handling bugs is relatively high. This emphasizes the
importance of properly dealing with exceptional control flow.

7 Conclusion

Many C++ programs exhibit exceptional control flow that standard CFG ex-
traction tools in disassemblers and decompilers do not identify. To deal with that
issue, we have provided EICFGs and a tool for generating them. EICFGs extend
standard CFGs extracted from binaries by including nodes and edges for excep-
tional control flow. Our abstract transition relation for exceptional control flow
has been informally – through testing – shown to overapproximate the concrete
semantics, modulo unresolved indirections. Furthermore, we have applied our
EICFG generator to 341 real-world programs and libraries. We identified 2574
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unique throws and were able to trace each one’s exceptional control flow: 1814
were potentially caught while 760 had no identified potential for being caught. On
average, dealing with exceptional control flow can increase coverage of reachable
instructions by 14 instructions per unique throw, with each throw averaging 188
edges in the potential unwinding paths from that throw. Those edges are ones
tools such as Ghidra do not produce.

One of the main drawbacks of our work is a propensity for state space
explosion. While we were able to target programs with over 400 000 instructions,
our EICFGs generally do not scale far beyond that. Even for smaller programs,
we experienced timeouts and out-of-memory cases when a significant number
of control flow nodes and edges were generated. Methods of reducing the state
space while maintaining interprocedural exceptional analysis would provide for
increased scalability and the ability to target even larger programs. For example,
modeling of exception type info and integrating it into the LPT determinations
would allow pruning of dead branches, reducing the tool’s overapproximation
without introducing unsoundness.

Our approach is specific to C++. The main challenge in applying a similar
analysis to binaries compiled from different languages with exception handling,
is to define abstract transition rules for their binary-level implementations (see
Figure 6). We argue that these semantics must be thoroughly tested, as small
implementation details may have large impact on the soundness of the approach.

There are several potential client analyses for our work. These include (semi-)
formal and verified decompilation, binary-level data-flow analysis tools, and
binary-level security analysis tools that require knowledge about the reachability
of instructions. These use cases align with the use cases of mature reverse
engineering tools such as Ghidra, and we envision that this work will be integrated
in such a tool suite.
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