
libLISA: Instruction Discovery and Analysis on x86-64
Jos Craaijo (Open Universiteit), Freek Verbeek (Open Universiteit & Virginia Tech),

Binoy Ravindran (Virginia Tech)

Analysis Overview Encodings and Semantics

The Problem

x86-64 still does not have a
full formal model

4700 pages of semantics in the
Intel reference manual

+100 new pages added to the ref-
erence manual every year

Handwritten specifications require huge
amounts of manual work, which is error
prone and labor intensive.

libLISA
We present libLISA, a tool for automated
discovery and analysis of the instructions on
a CPU.

CPU as the ground truth for the
generated semantics

AUTO matic instruction enu-
meration and analysis

NO disassembler is used. We auto-
matically generate encodings

libLISA observes CPU behavior and con-
structs semantics bottom-up.

Acknowledgements
This work is supported by the Defense Ad-
vanced Research Projects Agency (DARPA)
and Naval Information Warfare Center Pa-
cific (NIWC Pacific) under Contract No.
N66001-21-C-4028.

Results
We analyzed 5 CPU architectures:

• AMD 3900X
• AMD 7700X
• Intel Core i9-13900 (performance cores)
• Intel Core i9-13900 (efficiency cores)
• Intel Xeon Silver 4110

21 weeks of analysis

118k encodings generated by
libLISA’s analysis

97% of all instructions in typical
Linux binaries covered

89% of encodings has successfully
synthesized semantics

90% of encodings with undefined
behavior synthesized

All analysis results and source code are
available under open source licenses.

Emulation
We implemented a proof-of-concept user-
space emulator that is able to emulate some
real Linux binaries.

1.2M instructions successfully
emulated across 5 binaries

The emulator emulates the dynamic linker
(i.e., /lib64/ld-linux-x86-64.so.2), all
dynamically loaded libraries, as well as the
binary itself.

Architecture Comparison

10% of encodings differ
depending on architecture

2 instructions are sufficient to fingerprint
each of the 5 architectures (group 1 + 7)

Encodings 𝐴0 𝐴1 𝐴2 𝐴3 𝐴4
Group 0 95170
Group 1 4777
Group 2 2571
Group 3 1602
Group 4 604
Group 5 581
Group 6 101
Group 7 40
Group 8 29
Group 9 24
Group 10 16
… … … … … … …

Each symbol represents a different imple-
mentation for that specific group of instruc-
tions. The same symbols are re-used for
each row.

Examples of differences found:

SHR when shifting by 1, AMD sets
AF=1, Intel sets AF=0 (group 1)

ROL OF differs when rotating by 2 or
more (group 3)

DIV only AMD CPUs modify the PF,
AF, ZF and SF flags (group 5)

SHA1 not supported on
architecture 𝐴4 (group 6)

AVX 512VL-instructions not
supported on 𝐴0 + 𝐴4 (group 7)

liblisa.nl explore.liblisa.nl github.com/liblisa Craaijo et al., OOPSLA’24


