LIBLISA: Instruction Discovery and Analysis on x86-64

seeening

X

00

o

I

o

I
seeennng

Jos Craaijo (Open Universiteit), Freek Verbeek (Open Universiteit & Virginia Tech),
TIIOD Binoy Ravindran (Virginia Tech)

Analysis Overview Encodings and Semantics

_ a0aal1bb
Bitpattern P_ t_a P_t .
_ , ar
. Bitstring J0080008 !
Bitpattern v = = (>
: g X86-64 § aaa @ bb rip rp
Encodlr]g = — Dataflows |
Analysis CPU rax
Observer (000 =ra (o
Encoding] 001 = rbx 07 - rox
Part mapp|ng ddd < 010 = rex bb< 10 = rex
011 = rdx 11 = rdx
L L
Synthesis Semantics

fo(aaa, rax) = aaa + rax

Semantics fi(rip) =rip+1

The Problem "Results | Architecture Comparison
o of encodings differ
1 o /0 depending on architecture

2

We analyzed 5 CPU architectures:

* AMD 3900X
AMD 7700X

X86-64
47 o Intel Core i9-13900 (performance cores)
Intel Core i9-13900 (efficiency cores)

+ 1 oo new pages added to the ref- . Intel Xeon Silver 4110
erence manual every year

still does not have a
full formal model

pages of semantics in the
Intel reference manual

instructions are sufficient to fingerprint
each of the 5 architectures (group 1 +7)

Encodings 4, A, A, A; A,

Group0O 951770 B HE HE N B
Handwritten specifications require huge 21 Weeks of analvsic Group1 4777 W W @ A ©
amounts of manual work, which is error Y Group2 2571 B B
prone and labor intensive. 1 1 8k encodings generated by Group3 1602 W@ ® © ® @
LIBLISA's analysis Group 4 604 ® @® A Vv O
970/ of all instructions in typical Group 5 81 M W @6 6 O
. Group 7/ 40 HE B B
We present LIBLISA, a tool for automated 890/ of encodings has successfully Group 8 29 E B
discovery and analysis of the instructions on 0 synthesized semantics Group 9 24

a CPU.

CPU

Group 10 16 W N

[]
900/ of encodings with undefined O
0 behavior synthesized

All analysis results and source code are
available under open source licenses.

as the ground truth for the
generated semantics

Each symbol represents a different imple-
mentation for that specific group of instruc-

AU T matic instruction enu-
meration and analysis

disassembler is used. We auto-
matically generate encodings

LIBLISA observes CPU behavior and con-
structs semantics bottom-up.

Acknowledgements

This work is supported by the Defense Ad-
vanced Research Projects Agency (DARPA)
and Naval Information Warfare Center Pa-
cific (NIWC Pacific) under Contract No.
N66001-21-C-4028.

We implemented a proof-of-concept user-
space emulator thatis able to emulate some
real Linux binaries.

1.2M

The emulator emulates the dynamic linker
(i.,e., /11b64/1d-1inux-x86-64.s0.2), all
dynamically loaded libraries, as well as the
binary itself.

instructions successfully
emulated across 5 binaries

tions. The same symbols are re-used for
each row.

Examples of differences found:
SHR when shifting by 1, AMD sets
AF=1, Intel sets AF=0 (group 1)
DI‘, only AMD CPUs modify the PF,
AF, ZF and SF flags (group 5)
SHA1 not supported on
architecture A, (group 6)
A" 512VL-instructions not
supported on A, + A, (group 7)
. A C D) € : JUF A :

OF differs when rotating by 2 or
more (group 3)

