LIBLISA: Instruction Discovery and Analysis on x86-64
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The Problem "Results | Architecture Comparison
o of encodings differ
1 o /0 depending on architecture

2

We analyzed 5 CPU architectures:

* AMD 3900X
AMD 7700X

X86-64
47 o Intel Core i9-13900 (performance cores)
Intel Core i9-13900 (efficiency cores)

+ 1 oo new pages added to the ref- . Intel Xeon Silver 4110
erence manual every year

still does not have a
full formal model

pages of semantics in the
Intel reference manual

instructions are sufficient to fingerprint
each of the 5 architectures (group 1 +7)
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discovery and analysis of the instructions on 0 synthesized semantics Group 9 24

a CPU.
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All analysis results and source code are
available under open source licenses.

as the ground truth for the
generated semantics

Each symbol represents a different imple-
mentation for that specific group of instruc-

AU T matic instruction enu-
meration and analysis

disassembler is used. We auto-
matically generate encodings

LIBLISA observes CPU behavior and con-
structs semantics bottom-up.

Acknowledgements

This work is supported by the Defense Ad-
vanced Research Projects Agency (DARPA)
and Naval Information Warfare Center Pa-
cific (NIWC Pacific) under Contract No.
N66001-21-C-4028.

We implemented a proof-of-concept user-
space emulator thatis able to emulate some
real Linux binaries.

1.2M

The emulator emulates the dynamic linker
(i.,e., /11b64/1d-1inux-x86-64.s0.2), all
dynamically loaded libraries, as well as the
binary itself.

instructions  successfully
emulated across 5 binaries

tions. The same symbols are re-used for
each row.

Examples of differences found:
SHR when shifting by 1, AMD sets
AF=1, Intel sets AF=0 (group 1)
DI‘, only AMD CPUs modify the PF,
AF, ZF and SF flags (group 5)
SHA1 not supported on
architecture A, (group 6)
A" 512VL-instructions not
supported on A, + A, (group 7)
. A C D) € : JUF A :

OF differs when rotating by 2 or
more (group 3)




