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This paper studies an extension of O’Hearn’s incorrectness logic (IL) that allows backwards reasoning. IL

in its current form does not generically permit backwards reasoning. We show that this can be mitigated

by extending IL with underspecification. The resulting logic combines underspecification (the result, or

postcondition, only needs to formulate constraints over relevant variables) with underapproximation (it allows

to focus on fewer than all the paths). We prove soundness of the proof system, as well as completeness

for a defined subset of presumptions. We discuss proof strategies that allow one to derive a presumption

from a given result. Notably, we show that the existing concept of loop summaries – closed-form symbolic

representations that summarize the effects of executing an entire loop at once – is highly useful. The logic,

the proof system and all theorems have been formalized in the Isabelle/HOL theorem prover.
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1 Introduction
O’Hearn’s Incorrectness Logic (IL) is a logic intended for reasoning over the presence of bugs in

programs [27]. Bug-finding tools often are lacking the formal fundament that many verification

tools do tend to have. If a bug-finding tool is based on an underapproximative program logic such

as IL, that brings the advantages of having no false positives: reported bugs are actually reachable.

IL concerns triples of the form ⟨𝑃⟩ 𝐶 ⟨𝑄⟩ where 𝑃 models a presumption and 𝑄 models a result
(akin to respectively Hoare logic’s pre- and postconditions). It asserts that all result-states are
reachable from some presumption-state. This is formally defined as: 𝑄 ⊆ post[𝐶] (𝑃). In words, all

𝑄-states are in the post-set of the presumption. It is therefore dual to standard Hoare Logic, which

formulates triples as post[𝐶] (𝑃) ⊆ 𝑄 .

The key difference between IL and Hoare Logic is that in IL, the result 𝑄 underapproximates

the reachable states, whereas in Hoare Logic, the postcondition overapproximates them. Consider,

e.g., the program 𝑦 ← 𝑥 + 1. The triple ⟦𝑥 = 9⟧ 𝑦 ← 𝑥 + 1 ⟦𝑦 = 10⟧ is a valid triple when
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interpreted as a Hoare triple. It is, however, not a valid IL triple. The reason is that the result

should be an underapproximation of the set of states reachable from the presumption. The result

contains, e.g, the unreachable state where 𝑦 = 10 ∧ 𝑥 = 0, and thus does not underapproximate.

By using underapproximative results, false positives are prevented [27]. In the above example, the

overapproximative result 𝑦 = 10, if used in subsequent analysis, may lead us to falsely conclude

that an error is reachable from a state where 𝑥 = 0.

De Vries and Koutavas show that IL (in their paper called Reverse Hoare Logic) allows natural
specification of non-deterministic programs when needing to universally quantify over results [34].

Consider the program 𝑦 ← rand(), and the specification that all results where 𝑦 < 10 should be

reachable. The triple ⟦True⟧ 𝑦 ← rand() ⟦𝑦 < 10⟧ does not hold when interpreted as a Hoare

triple. It is an IL triple: all result states are reachable from some state satisfying the presumption.

Note that if a result state is reachable from some initial state 𝑠 , this does not imply that all states

reachable from 𝑠 satisfy the result. Underapproximative results thus allow elegant formulation of

specifications of non-deterministic programs.

The name Incorrectness Logic, thus, does not cover all its uses. When IL is used for reasoning

over incorrectness, the result models a bug and IL aims at proving the presence of bugs without

false positives. However, phrased more generically IL is useful for proving that a program can at
least produce all desired results. This can be seen as incorrectness reasoning (the program can at

least produce the bug), but also as correctness or reachability.

With these use cases in mind, it makes sense to combine IL with backwards reasoning, i.e.,

automatically generating a presumption from a desired result. This would enable one to formulate

desired results (e.g., assertions or the negations thereof), and prove that these results are triggerable
from some initial state satisfying the generated presumption. However, IL in its current form

cannot generically be used for backwards reasoning. The difficulty of combining IL with backwards

reasoning can be observed by looking at the assignment rule. The standard rule for HL (doing

substitution) is unsound for IL. For IL, the assignment rule is as follows:

Assign⟨𝑃⟩ 𝑦 ← 𝑒 ⟨∃𝑦′ · 𝑃 [𝑦′/𝑦] ∧ 𝑦 = 𝑒 [𝑦′/𝑦]⟩
This rule allows one to derive a result from a presumption (i.e., forwards reasoning), but not the

other way around.

The underlying issue is that IL does not allow underspecification of the result. Consider again

the first example above: the program 𝑦 ← 𝑥 + 1 with a result 𝑦 = 10. This result has no

presumption, since not all result-states are reachable: a state with 𝑦 = 10 and 𝑥 = 0 satisfies the

result but is unreachable. In the context of backwards reasoning, one should have formulated a

result 𝑦 = 10∧ 𝑥 = 9, to obtain a presumption 𝑥 = 9. However, in a context where the desired result

is defined by a user, requiring full specification is burdensome and infeasible.

The contribution of this paper is an extension of IL with underspecification, called Underspecified

Incorrectness Logic (UIL). UIL explicitly enables underspecification by allowing one to treat variables

as irrelevant variables. In the example above, one could formulate that one is interested in a result

𝑦 = 10. That will generate a presumption where 𝑥 = 9 with variable 𝑥 underspecified (“irrelevant”)

in the result, and variable 𝑦 underspecified in the presumption. In words, all states where 𝑦 = 10

where we do not care about 𝑥 are reachable from some state where 𝑥 = 9 where we do not care

about 𝑦.

We provide a proof system for backwards reasoning over UIL that is sound, and complete

for a defined subset of presumptions. Practically, a challenge is dealing with loops. We show

that UIL enables the use of existing techniques for loop summarization [15, 18, 30, 32, 35, 36]:

aiming to overapproximate the effects of a loop with a single set of symbolic assignments. Given a
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loop summary, loops can be taken care of programmatically, i.e., no manual instantiation of loop

invariants is required. The more variables can be summarized, the more precise the generated

presumption becomes.

Developing trustworthy, scalable and principled bug-finding and reachability tools is a major

challenge in both academia and industry. Providing developers of such a tool with a larger toolbox

(e.g., backwards reasoning) will aid in their development. One can imagine, e.g., achieving more

scalability by combining forward and backwards symbolic execution [3]. This paper focuses not on

the development of such tools, but on extending IL with backward reasoning, aiming to add a new

component to the toolbox of principled reachability analysis.

In the landscape of program logics, UIL distinguishes itself by being the only logic that allows both

underspecification and underapproximation of the result. We show that this facilitates backwards

reasoning. Section 2.1 concretizes these claims and their arguments. Even though various program

logics related to incorrectness have been studied recently [25, 37], the variation presented in

this paper is – to the best of our knowledge – novel. In Section 6 we discuss the relation to the

state-of-the-art in more detail.

2 Underspecified Incorrectness Logic
Underspecified Incorrectness Logic (UIL) revolves around triples of the form:

⟨𝑃 ⊥⊥ 𝑉 ⟩ 𝐶 ⟨𝑄 ⊥⊥ 𝑉 ′⟩
Here,𝐶 denotes a program, 𝑃 and𝑄 denote state predicates, and𝑉 and𝑉 ′ denotes sets of variables.
The intuition is that a 𝑄-state is reachable by execution of𝐶 from some 𝑃-state, as long as variables
from 𝑉 (𝑉 ′) can be ignored in the presumption (result). We call them irrelevant variables. This is
very close to the intuition behind an incorrectness triple, which states that any 𝑄-state is reachable

from some 𝑃-state.

We use 𝜇 to denote a mapping from variables to values. Notation 𝑠 [𝑉 B 𝜇] is used to modify

state 𝑠 for all variables in 𝑉 with the value from mapping 𝜇. A transition from state 𝑠 to state 𝑠′

after execution of program 𝐶 is denoted with 𝑠
𝐶−→ 𝑠′. Finally, we use 𝑃 to denote the set of states

satisfying predicate 𝑃 . We redefine the post-set of a set of states to incorporate underspecification:

post[𝐶] (𝑃,𝑉 ,𝑉 ′) ≡ {𝑠′ | ∃𝑠 ∈ 𝑃 · ∀𝜇 · ∃𝜇′ · 𝑠 [𝑉 B 𝜇] 𝐶−→ 𝑠′ [𝑉 ′ B 𝜇′]}
In words, when underspecifying variables 𝑉 (𝑉 ′) in the presumption (result), the set of post-states

reachable from a 𝑃-state is defined by considering transitions from any 𝑃-state where variables

in 𝑉 can be any value. If values for variables in 𝑉 ′ can be selected so that state 𝑠′ is produced, it
is considered a post-state. Note that if both sets of variables 𝑉 and 𝑉 ′ are empty, the definition

reverts back to the traditional definition of a post-set.

Example 2.1. Consider the program 𝐶 as 𝑦 ← 𝑥 + 4 % 7 (here we use ← for assignment). Let

𝑉 = ∅ and 𝑉 ′ = {𝑥}, that is, we treat variable 𝑥 as irrelevant in the result. The set of post-states of

presumption 𝑥 = 0 is the set {𝑠 | 𝑠 .𝑦 = 4} (here 𝑠 .𝑦 denotes the value of variable 𝑦 in state 𝑠). In

contrast, if we take𝑉 ′ = ∅, the normal post-set of the presumption is the set {𝑠 | 𝑠 .𝑦 = 4∧ 𝑠 .𝑥 = 0}.

Definition 2.2. A UIL-triple is defined as:

⟨𝑃 ⊥⊥ 𝑉 ⟩ 𝐶 ⟨𝑄 ⊥⊥ 𝑉 ′⟩ ≡ 𝑄 ⊆ post[𝐶] (𝑃,𝑉 ,𝑉 ′)

The triples are under-approximative in the same fashion as incorrectness triples are [27]: the

set of 𝑄-states is a subset of the set of states reached from a 𝑃-state. The definition of a UIL triple

formulates that for any 𝑄-state 𝑠′, there must be some 𝑃-state 𝑠 that leads to 𝑠′. That transition is

independent of the values of variables in𝑉 in state 𝑠 , and may produce different values for variables
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in 𝑉 ′ in state 𝑠′. In other words, 𝑉 -variables in the presumption and 𝑉 ′-variables in the result are

ignored. If both 𝑉 and 𝑉 ′ are empty, the definition reverts back to regular incorrectness logic.

2.1 Usefulness of UIL
To discuss usefulness of UIL, we contrast it with IL, Hoare Logic (HL) and Sufficient Incorrectness

Logic (SIL, [2]). In this context, one would consider Hoare Triples of the form {¬𝑃} 𝐶 {¬𝑄}, which
we will call Negated Hoare Logic (NHL). SIL uses triples defined as 𝑃 ⊆ pre[𝐶] (𝑄), i.e., all 𝑃-states
lead to some 𝑄-state. For deterministic and terminating programs, this is equivalent to standard

Hoare Logic.

We will make the following claims over UIL:

(1) In contrast to IL, UIL enables backwards reasoning. It thus enables a use-case where a desired
result is provided by a user, and from that result a presumption can be generated.

(2) In contrast to IL, UIL allows underspecification of a result. This is important in the context of

backwards reasoning over reachability of a result, since the result will typically not specify

constraints over the entire state.

(3) In contrast to both NHL and SIL, but in accordance to IL, UIL allows underapproximation of
results. In the context of reasoning over reachability, underapproximation is desired as the

purpose only is finding some path that triggers the result.

(4) In contrast to SIL, but in accordance to IL, UIL aims at proving all results are reachable.
Claim 1. The first claim is argued by the fact that for IL, backwards reasoning is impossible,

whereas for UIL we will provide a proof system for backwards reasoning in Section 2.2. For IL,

there is no backwards rule for dealing with assignment. The standard rule for HL is unsound [27].

O’Hearn states that (Fact 9 in [27]) for IL: “valid presumptions need not exist: given a relation 𝐶

and result 𝑄 , there need not exist any 𝑃 such that ⟨𝑃⟩ 𝐶 ⟨𝑄⟩”. UIL aims to address that issue.

UIL IL NHL SIL

⟦(𝑥 % 7) = 0⟧ 𝑦 ← 𝑥 + 4 % 7 ⟦𝑦 = 4⟧ ✓ ✓ ✓
⟦𝑦 = 0⟧ 𝑦 ← 𝑦 + 4 % 7 ⟦𝑦 = 4⟧ ✓ ✓ ✓
⟦𝑥 = 0⟧ 𝑦 ← 𝑥 + 4 % 7 ⟦𝑦 = 4⟧ ✓ ✓
⟦𝑥 = 0⟧ 𝑦 ← 𝑥 + 4 % 7 ⟦𝑦 ≥ 4⟧ ✓
⟦(𝑥 % 7) = 0⟧ 𝑦 ← 𝑥 + 4 % 7 ⟦𝑦 = 4 ∧ (𝑥 % 7) = 0⟧ ✓ ✓ ✓ ✓

Table 1. Examples of program triples. We consider a state with two variables 𝑥 and 𝑦 storing natural numbers.

Claim 2. Consider the first example in Table 1. In the example, we are interested in a result

where 𝑦 = 4, and 𝑥 and 𝑦 are natural numbers. In the context of IL, there is no presumption 𝑃 ,

in other words, there is no IL triple for this result. Reason is that not all states where 𝑦 = 4 are

reachable. For IL, the result may not be underspecified. In this example, the result must also specify

(𝑥 % 7) = 0 for an IL triple to hold. UIL allows to establish this triple, by treating 𝑥 as an irrelevant

variable in the result.

Claim 3. Consider the second example of Table 1. IL differs with NHL whenever there are

multiple ways to achieve the same result. For IL and UIL, it suffices that the presumption models

some way to achieve the result (𝑦 = 0 in the example). NHL requires the presumption to model all
ways to achieve the result. This is a fundamental characteristic of IL that UIL inherits. It can be

seen from the inference rules Pre-Weaken and Post-Strengthen in Figure 1. What UIL inherits

from IL is postcondition strengthening. This, in words of O’Hearn, “allows to focus on fewer than all

the paths, a feature which is a hallmark of under-approximation” and “can be used in order to help
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a reasoning tool scale” [27]. In other words, IL (and thus UIL) allows postcondition strengthening,

whereas NHL and SIL do not.

The third example combines the above claims into an example where UIL enables underspecifi-

cation (variable 𝑥 is not specified in the result) and underapproximation (there are more reachable

states where 𝑦 = 4 than provided by presumption 𝑥 = 0). IL is stronger than UIL without irrelevant

variables in the presumption, i.e.:

⟨𝑃⟩ 𝐶 ⟨𝑄⟩ =⇒ ⟨𝑃 ⊥⊥ ∅⟩ 𝐶 ⟨𝑄 ⊥⊥ 𝑉 ′⟩

Claim 4. Finally, the purpose of IL (and thus UIL) is to prove all results are reachable. Consider

the fourth row in Table 1. Not all result states are reachable from the presumption, which is why

both IL and UIL disallow it. SIL shows that some result state (namely, where𝑦 = 4) is always reached
from the initial state where 𝑥 = 0.

Loop Unrolling. A hallmark of IL is loop unrolling [27]. This allows proving triples over a

loop, without needing invariants. UIL inherits loop unrolling from IL, i.e., the exact same form of

reasoning is possible for UIL. The loop unrolling rule for UIL is as follows:

∀𝑖 ≤ 𝑛 · ⟨𝑃 ⊥⊥ 𝑉 ⟩ 𝐶𝑖 ⟨𝑄𝑖 ⊥⊥ 𝑉 ′⟩
LoopUnrolling⟨𝑃 ⊥⊥ 𝑉 ⟩ While True Do 𝐶 ⟨∨𝑖≤𝑛 𝑄𝑖 ⊥⊥ 𝑉 ′⟩

Here 𝐶𝑖
denotes 𝑖 repetitions of program 𝐶 . The rule generalizes to loops with loop conditions

other than True.
Loop unrolling states that one can prove a triple over a loop by proving the triple over a bounded

number of iterations. This is sound, since we only need to prove the result is reachable through

some path, i.e., there is no need to reason over all possible behaviors of the loop. Thus, there is no

need for invariants. Consider program 𝐶 as While 𝑥 < 10 Do 𝑥 ← 𝑥 + 1 and a result 𝑄 as 𝑥 = 10.

We can derive a triple for this result simply by unrolling the loop a certain number of iterations.

As such, we can derive ⟨𝑥 = 5⟩ 𝐶 ⟨𝑄⟩ by unrolling five iterations, but also ⟨𝑄⟩ 𝐶 ⟨𝑄⟩ by simply

unrolling zero iterations.

Combining UIL with test-case generation. A UIL triple ⟨𝑃 ⊥⊥ 𝑉 ⟩ 𝐶 ⟨𝑄 ⊥⊥ 𝑉 ′⟩ shows that a
bug characterized by𝑄 is reachable. It shows that in order to replay the bug, a state can be initialized

where variables not in 𝑉 must have some value according to presumption 𝑃 . Variables from 𝑉

need not be initialized with specific values. Deriving a UIL triple thus becomes valuable when

presumption 𝑃 is strong and set𝑉 is large. A triple with the weakest presumption and smallest set of

irrelevant variables ⟨True ⊥⊥ ∅⟩ 𝐶 ⟨𝑄 ⊥⊥ 𝑉 ′⟩ shows that the result is reachable, but does not provide
any information on how to obtain that result. In contrast, a triple ⟨𝑥 = 0 ⊥⊥ 𝑈 − 𝑥⟩ 𝐶 ⟨𝑄 ⊥⊥ 𝑉 ′⟩
– where𝑈 is the universe set of all variables – provides a lot of information at it shows that all result

states are reachable from a state where 𝑥 = 0 and that no other variables influence that reachability.

Similarly, a UIL triple becomes more valuable if the result is weak and set 𝑉 ′ is small. A weaker

result means that more states have been proven reachable. In contrast, the result False vacuously
holds. If set𝑉 ′ is the universe set𝑈 and the result is not False, then triple ⟨𝑃 ⊥⊥ 𝑉 ⟩ 𝐶 ⟨𝑄 ⊥⊥ 𝑈 ⟩ only
shows that 𝑃 is not False (assuming program 𝐶 terminates). That triple basically only formulates

“there exists some 𝑃-state that leads to some state”. In contrast, a triple ⟨𝑃 ⊥⊥ 𝑉 ⟩ 𝐶 ⟨𝑥 ≥ 0 ⊥⊥ {}⟩
shows that all states where 𝑥 ≥ 0 are reachable from the presumption.

Since result 𝑄 is provided by a user, we thus argue UIL is useful in the context of test-case

generation if it provides strong presumptions that underspecify many variables.
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g =
←−
𝑓 on VS(𝑦,𝑄) 𝑥 ≠ 𝑦 =⇒ 𝑥 ∈ 𝑉 𝑄 =⇒ 𝑦 ∈ image(f)

Assign⟨𝑄 [𝑓 (𝑥)/𝑦] ∧ 𝑥 ∈ image(g) ⊥⊥ 𝑉 + 𝑦 − 𝑥⟩ 𝑦 ← 𝑓 (𝑥) ⟨𝑄 ⊥⊥ 𝑉 ⟩

𝑄 =⇒ 𝑦 = 𝑓 (𝑥) 𝑥 ∉ 𝑉
Assign_Relevant_Src⟨𝑄 [𝑓 (𝑥)/𝑦] ⊥⊥ 𝑉 + 𝑦 − 𝑥⟩ 𝑦 ← 𝑓 (𝑥) ⟨𝑄 ⊥⊥ 𝑉 ⟩

𝑦 ∈ 𝑉
Assign_Irrelevant_Dst⟨𝑄 ⊥⊥ 𝑉 ⟩ 𝑦 ← 𝑓 (𝑥) ⟨𝑄 ⊥⊥ 𝑉 ⟩

Destroy⟨∃𝑣 ·𝑄 [𝑣/𝑦] ⊥⊥ 𝑉 + 𝑦⟩ destroy(y) ⟨𝑄 ⊥⊥ 𝑉 ⟩

⟨𝑃 ⊥⊥ 𝑉 ⟩ 𝐶0 ⟨𝑄 ⊥⊥ 𝑉 ′⟩ ⟨𝑄 ⊥⊥ 𝑉 ′⟩ 𝐶1 ⟨𝑅 ⊥⊥ 𝑉 ′′⟩
Seq⟨𝑃 ⊥⊥ 𝑉 ⟩ 𝐶0;𝐶1 ⟨𝑅 ⊥⊥ 𝑉 ′′⟩

⟨𝑃0 ⊥⊥ 𝑉0⟩ 𝐶0 ⟨𝑄 ∧ 𝑏 ⊥⊥ 𝑉 ′ − 𝑏⟩ ⟨𝑃1 ⊥⊥ 𝑉1⟩ 𝐶1 ⟨𝑄 ∧ ¬𝑏 ⊥⊥ 𝑉 ′ − 𝑏⟩
ITE⟨𝑃0 ∨ 𝑃1 ⊥⊥ 𝑉0 ∩𝑉1⟩ If 𝑏 Then 𝐶0 Else 𝐶1 ⟨𝑄 ⊥⊥ 𝑉 ′⟩

⟨𝑃0 ⊥⊥ 𝑉0⟩ 𝐶0 ⟨𝑄 ∧ 𝑏 ⊥⊥ 𝑉 ′ − 𝑏⟩ 𝑏 ∈ 𝑉 ′
ITE_Irrelevant_True⟨𝑃0 ⊥⊥ 𝑉0⟩ If 𝑏 Then 𝐶0 Else 𝐶1 ⟨𝑄 ⊥⊥ 𝑉 ′⟩

⟨P(𝑛′) ∧ 𝑏 ⊥⊥ 𝑉 ⟩ 𝐶 ⟨P(𝑛′ + 1) ∧ 𝑛′ < n ⊥⊥ 𝑉 ⟩ 𝑄 =⇒ P(n) ∧ ¬𝑏
While⟨P(0) ⊥⊥ 𝑉 ⟩ While 𝑏 Do 𝐶 ⟨𝑄 ⊥⊥ 𝑉 ⟩

⟨P0 ⊥⊥ V0⟩ 𝐶 ⟨Q0
⊥⊥ V’0⟩ P0 ⊆ 𝑃 𝑄 ⊆ Q

0
𝑉 ⊆ V0 V’0 ⊆ 𝑉 ′ Pre-Weaken

Post-Str.⟨𝑃 ⊥⊥ 𝑉 ⟩ 𝐶 ⟨𝑄 ⊥⊥ 𝑉 ′⟩

⟨𝑃0 ⊥⊥ 𝑉0⟩ 𝐶 ⟨𝑄0 ⊥⊥ 𝑉 ′⟩ ⟨𝑃1 ⊥⊥ 𝑉1⟩ 𝐶 ⟨𝑄1 ⊥⊥ 𝑉 ′⟩
SplitResult⟨𝑃0 ∨ 𝑃1 ⊥⊥ 𝑉0 ∩𝑉1⟩ 𝐶 ⟨𝑄0 ∨𝑄1 ⊥⊥ 𝑉 ′⟩

Fig. 1. Proof system for UIL suitable for backward reasoning. The bold parts need to be instantiated with
values when applying the rules in backwards fashion. Wrt. notation: we use𝑉 +𝑦 to insert element 𝑦 in set𝑉
(and similar for removal with −.)

2.2 Backwards Reasoning over UIL
As programs, we consider a simple While language [19], with non-determinism. We consider

if-statements with singular Boolean variables 𝑏 as branching conditions, that are not modified by

execution of the if-statement itself. This allows us to elegantly formulate a rule that selects a path

in backwards fashion. Note that this is not a restriction: any if-statement If 𝑒 Then𝐶0 Else𝐶1 (for

some expression 𝑒) can be rewritten to 𝑏 ← 𝑒 ; If 𝑏 Then𝐶0 Else𝐶1 for some fresh variable 𝑏. To

introduce non-termination, we introduce the perpetuate construct. To introduce non-determinism,

we add the destroy(y) construct, that writes some unknown non-deterministic value to variable y.

Semantics are given by a standard transition relation over states

𝐶−→. For the destroy(y) construct,
for any value 𝑣 we have 𝑠

destroy(y)
−−−−−−−−→ 𝑠 [𝑦 B 𝑣]. There is no 𝑠′ such that 𝑠

perpetuate−−−−−−−−−→ 𝑠′.
As predicates, we consider predicates that may include a ⊤ symbol (an unknown value). A

predicate is interpreted as Kleene’s strong three-valued logic [21]. Notably, both ⊤ =⇒ ⊤ and
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⊤ = ⊤ evaluate to ⊤. We consider a state to be satisfying predicate 𝑃 if and only if predicate 𝑃

possibly holds, i.e.:

𝑠 ∈ 𝑃 ⇐⇒ 𝑃 can evaluate to true in state 𝑠

For example, ⊤ is the universe set of all states.

Figure 1 provides a proof system for UIL for backwards reasoning. We explain the rules below.

Note there is no rule for the perpetuate construct, as any result after that is unreachable.

Assignment.We present an assignment rule for assigning 𝑓 (𝑥) to variable 𝑦. Note that 𝑥 can

be a tuple, in case of functions with multiple arguments (examples follow in Section 2.3). Function

𝑓 can be the identity function in case of simple data movement.

The rule states that a presumption 𝑄 [𝑓 (𝑥)/𝑦] can be derived from a result 𝑄 , which is akin to

the standard assignment rule for Hoare logic and for backwards underapproximative reasoning as

defined in [25]. However, it requires the assumption that for all 𝑄-states variable 𝑦 is within the

image of function 𝑓 . Consider again the first example of Table 1. If result 𝑄 would permit states

where 𝑦 ≥ 7, i.e., outside of the image of 𝑓 , then it is not reachable. When 𝑥 is used as input to the

assignment, it must be an irrelevant variable in the result.

Moreover, function 𝑓 must have a right inverse. Function g of type 𝑌 ↦→ 𝑋 is a right inverse of

function 𝑓 of type 𝑋 ↦→ 𝑌 on set 𝑌 ′, notation g =
←−
𝑓 on 𝑌 ′, if and only if, 𝑓 (g(𝑦)) = 𝑦 for all 𝑦 ∈ 𝑌 ′.

In words, function 𝑓 can “undo” function g for all 𝑦 in 𝑌 ′. Assuming the axiom of choice, every

function 𝑓 has a right inverse on the image of 𝑓 .

We loosen the requirement on g by requiring it to be a right inverse only for relevant values. Let

the value set of variable 𝑦 in predicate 𝑄 , notation VS(𝑦,𝑄) be the set of all values that variable 𝑦
can have in 𝑄 :

VS(𝑦,𝑄) ≡ {𝑣 | ∃𝑠 ∈ 𝑄 · 𝑠 .𝑦 = 𝑣}
We require g to be right inverse only on the value set of variable 𝑦 in predicate 𝑄 .

Function g can be used to “zoom in” on specific values when instantiated appropriately. The

generated presumption allows us to restrict the values of input 𝑥 to the image of 𝑔. This is essential

for dealing with assignments underapproximatively. Section 2.3 provides further examples on how

to instantiate g.

Example 2.3. Let 𝑓 (𝑥) = 𝑥 + 4 % 7 and g(𝑦) = 𝑦 − 4 % 7. Since 𝑓 (g(𝑦)) = ((𝑦 − 4 % 7) + 4 % 7) = 𝑦

for all 𝑦 < 7 (i.e., for all 𝑦 in the image of 𝑓 ), g is the right inverse of 𝑓 . The image of g amounts to

𝑥 < 7. Thus we can derive:

Assign⟨(𝑥 + 4 % 7) = 4 ∧ 𝑥 < 7 ⊥⊥ {𝑦}⟩ 𝑦 ← 𝑥 + 4 % 7 ⟨𝑦 = 4 ⊥⊥ {𝑥}⟩
The presumption simplifies to 𝑥 = 0 (the third example of Table 1). The result underspecifies

variable 𝑥 . The presumption states that the value of 𝑦 is irrelevant for reachability of the result.

Note that we could have also instantiated g with g(𝑦) = 𝑦 − 4. However, that would not have

allowed us to “zoom in” on value 𝑥 = 0 as the image of that function is the universe set.

In cases where input 𝑥 is considered relevant, proving that the result is necessarily reachable

can only be done for a specific set of results. Rule Assign_Relevant_Src shows that backwards
traversal is then possible, if result 𝑄 is strong enough to imply reachability. Essentially, in this case

one does not have the benefit of underspecification, and therefore 𝑄 must be sufficiently specified.

Rule Assign_Irrelevant_Dst shows that as long as variable 𝑦 is irrelevant in the result, we can

simply ignore it.

Sequence. The sequence rule is straightforward. It shows that intermediate irrelevant variables

are gathered.
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Example 2.4. We can derive the following:

⟨𝑥 > 3 ⊥⊥ 𝑉 + 𝑧 + 𝑦 − 𝑥⟩ 𝑦 ← 𝑥 + 3 ⟨𝑦 > 6 ⊥⊥ 𝑉 + 𝑧 − 𝑦⟩
⟨𝑦 > 6 ⊥⊥ 𝑉 + 𝑧 − 𝑦⟩ 𝑧 ← 𝑦 + 4 ⟨𝑧 > 10 ⊥⊥ 𝑉 ⟩

Seq⟨𝑥 > 3 ⊥⊥ 𝑉 + 𝑧 + 𝑦 − 𝑥⟩ 𝑦 ← 𝑥 + 3; 𝑧 ← 𝑦 + 4 ⟨𝑧 > 10 ⊥⊥ 𝑉 ⟩
In words, all states where 𝑧 > 10 are reachable from a state where 𝑥 > 3. Variables 𝑧 and 𝑦 are

irrelevant variables in the presumption, whereas 𝑥 is relevant.

If-then-else. The if-then-else rule shows that we can split a result into two paths. Only variables

that are irrelevant for both paths can be considered to be irrelevant for the if-then-else statement.

Note that if the result specifies the path of interest (by implying a value for branching condition𝑏),

then one does not need to explore the other path. Since for the other path the result will be logically

equivalent to False, one can derive as presumption for that path True with as irrelevant set 𝑉 the

universe set.

Example 2.5. We can derive the following for any 𝑉 not containing 𝑏:

⟨𝑏 ⊥⊥ 𝑉 + 𝑦⟩ 𝑦 ← 0 ⟨𝑦 = 0 ∧ 𝑏 ⊥⊥ 𝑉 ⟩
ITE⟨𝑏 ⊥⊥ 𝑉 + 𝑦⟩ If 𝑏 Then 𝑦 ← 0 Else . . . ⟨𝑦 = 0 ∧ 𝑏 ⊥⊥ 𝑉 ⟩

In words, all states where 𝑦 = 0 are reachable from a state where branching condition 𝑏 holds.

Variable 𝑦 is an irrelevant variable in the presumption, whereas 𝑏 is relevant. Note that this triple

can be established without any knowledge over the other branch (the dots).

A similar reasoning is applied through rule SplitResult, but more generically. If result 𝑄

can be split into two disjuncts, then one can perform backwards traversal on both disjuncts.

The presumptions can be combined through disjunction, and the sets of irrelevant variables are

intersected. This rule is necessary for a proof of completeness (see Theorem 2.12).

However, it may also be the case that the result underspecifies the path of interest by having

𝑏 ∈ 𝑉 ′. In that case one can choose during backwards exploration which path to take. Rule

ITE_Irrelevant_True shows that one can explore one path (the rule for the False case is omitted

but is similar).

While. Dealing with loops is the most involved. It requires instantiation of two constituents: a

parameterized state predicate P that is backwards inductive, i.e., a state satisfying P(𝑛′+1) should be
reachable from a state satisfying P(𝑛′). (the term “backwards inductive” will be defined formally in

Section 3.2). Moreover, it requires finding an iteration count n that models the number of iterations

the loop is executed. The result 𝑄 should imply P(n), i.e., it should imply n loop iterations, and it

should imply the negation of the branching condition. The latter is necessary: a while-loop with

branching condition 𝑏 can never result in a state where 𝑏 holds. The rule states that if there exists
an instantiation for n such that for all 𝑛′ < n the assumption holds, the conclusion can be derived.

Consider the following program𝑊 : While 𝑥 < 16 Do 𝑥 ← 𝑥 + 2. Consider any 𝑄 that implies

the negation of the branching condition, e.g, 𝑥 = 100. One can always instantiate P(𝑛′) = 𝑄 for

all 𝑛′ and instantiate n = 0. That models that the loop is not executed at all. The assumption of the

while-rule becomes vacuously true (note that the result of the triple in the assumption becomes

false). This way, it is trivial to derive:

While⟨𝑥 = 100 ⊥⊥ 𝑉 ⟩𝑊 ⟨𝑥 = 100 ⊥⊥ 𝑉 ⟩
However, if one wants to show reachability of the result after a certain number of iterations, P

must be instantiated more cleverly.

Example 2.6. Consider program𝑊 above. We consider a result 𝑄 where 𝑥 = 16. Let P(𝑛′) return
true iff 𝑥 = 4 + 2𝑛′ and let n = 6. We have 𝑄 =⇒ 𝑥 = 4 + 2 · 6 ∧ 𝑥 ≥ 16. Therefore, we can derive

for all 𝑛′ < 6:
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⟨𝑥 = 4 + 2𝑛′ ∧ 𝑥 < 16 ⊥⊥ 𝑉 ⟩ 𝑥 ← 𝑥 + 2 ⟨𝑥 = 4 + 2(𝑛′ + 1) ∧ 𝑛′ < 6 ⊥⊥ 𝑉 ⟩
While⟨𝑥 = 4 ⊥⊥ 𝑉 ⟩𝑊 ⟨𝑥 = 16 ⊥⊥ 𝑉 ⟩

In words, all states where 𝑥 = 16 are reachable from a state where 𝑥 = 4 after 6 loop iterations.

This rule again exposes the ability to focus on fewer than all paths. This time not by selecting

a path through a branching condition, but by instantiating an iteration count. One can always

choose 0 iterations. In the example above, we could also have instantiated P(𝑛′) with 𝑥 = 2𝑛′ and n
with 8. That would lead to presumption 𝑥 = 0. In Section 3.2, we will show how parameterized

state predicates and iteration counts for loops can be found programmatically.

2.3 Examples of Applying Rule Assign

We first show an example that illustrates how the image of function g can be used to “zoom in” on

specific parts of the domain, similar to Example 2.3.

Example 2.7. Consider a program 𝑦 ← sin(𝑥) with 𝑥 and 𝑦 real numbers. For any 𝑛, function

g(𝑦) = 𝑠𝑖𝑛−1 (𝑦) +𝑛𝜋 is a right inversion on the image of sin. That function has as image − 1

2
𝜋 +𝑛𝜋 ≤

𝑦 ≤ 1

2
𝜋 + 𝑛𝜋 . Consider as result 0 ≤ 𝑦 ≤ 0.5. We can derive, among others, the following

presumptions:

0 ≤ 𝑥 ≤ 1

6
𝜋 by taking g(𝑦) = 𝑠𝑖𝑛−1 (𝑦)

5

6
𝜋 ≤ 𝑥 ≤ 𝜋 by taking g(𝑦) = 𝑠𝑖𝑛−1 (𝑦) + 𝜋
· · ·

m𝜋 ≤ 𝑥 ≤ (m + 1

6
)𝜋 andm is even

∨ (m − 1

6
)𝜋 ≤ 𝑥 ≤ m𝜋 andm is odd

by taking g(𝑦) = 𝑠𝑖𝑛−1 (𝑦) +m𝜋

Each of these cases can be considered a path, i.e., one can choose one of these intermediate

presumptions and continue from there to try and reach the entry point. Note that the final example

delays picking a path by introducing a fresh variablem and by not instantiating it with a value. We

expand on these points in Section 3.

Next, we show how the fact that g only needs to be a right inverse on the value set of 𝑄 can be

leveraged. For function sin, we can prove:

⟨𝑥 = 0 ⊥⊥ {𝑦}⟩ 𝑦 ← sin(x) ⟨𝑦 = 0 ⊥⊥ {𝑥}⟩
simply by instantiating g such that g(𝑦) = 0, even though that function is not a right inverse of

sin on its entire image. The value set of 𝑦 in 𝑄 is {0}, which makes it easy to prove a presumption

such as 𝑥 = 0 or 𝑥 = 𝜋 for result 𝑦 = 0.

One might have the intuition that if function 𝑓 destroys information (i.e., performs abstraction),

the function cannot be reversed. However, the underapproximative nature of UIL only requires to

find some values that lead to the result.

Example 2.8. Let 𝑥 (𝑦) be a real (natural) number, and consider the floor function that abstracts

real numbers to naturals. It has no inverse, but we can prove:

⟨𝑥 ≤ 10 ⊥⊥ {𝑦}⟩ 𝑦 ← ⌊𝑥⌋ ⟨𝑦 ≤ 10 ⊥⊥ {𝑥}⟩
by using g(𝑦) = min(𝑦, 10), which is a right inverse on the value set of 𝑦 in the result. Note that

the presumption is a simplification of ⌊𝑥⌋ ≤ 10 ∧ 𝑥 ∈ image(g), and only the right hand side of

this conjunction actually provides the underapproximative bound 10 of the presumption.

Finally, we show an example for an assignment with multiple inputs. Input 𝑥 is considered a

tuple, and thus function g must produce a tuple from a value 𝑦.
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Example 2.9. Consider a situation where for the xor function we want to prove:

⟨𝑥 = 𝑤 ⊥⊥ {𝑦}⟩ 𝑦 ← 𝑥 ⊕𝑤 ⟨𝑦 = 0 ⊥⊥ {𝑥,𝑤}⟩

We instantiate g such that g(𝑦) = (𝑦, 1) and establish that 𝑓 (g(𝑦)) = 𝑦 ⊕ 1 = 𝑦. This derives

presumption 𝑥 ⊕𝑤 = 0 ∧𝑤 = 1, and with precondition weakening we can prove the example.

2.4 Soundness and Completeness
Theorem 2.10 (Soundness). The proof system in Figure 1 is sound, i.e., any triple derived from

these rules holds.
⊢ ⟨𝑃 ⊥⊥ 𝑉 ⟩ 𝐶 ⟨𝑄 ⊥⊥ 𝑉 ′⟩ =⇒ |= ⟨𝑃 ⊥⊥ 𝑉 ⟩ 𝐶 ⟨𝑄 ⊥⊥ 𝑉 ′⟩

Proof. The theorem has been formalized and proven in the Isabelle theorem prover in Higher-

Order-Logic (HOL). We here discuss the proof for rule Assign as example.

We need to prove that for any state 𝑠′ ∈ 𝑄 , there exists some state 𝑠 ∈ 𝑃 such that for all 𝜇 there

exists a 𝜇′ such that 𝑠 [𝑉 − 𝑦 + 𝑥 B 𝜇]
𝑦 ← 𝑓 (𝑥 )
−−−−−−−−→ 𝑠′ [𝑉 B 𝜇′]. We take as value for 𝑥 the value

g(𝑠′ .𝑦). We construct state 𝑠 as follows:

𝑠
def

= 𝑠′ [𝑥 B g(𝑠′ .𝑦)]

We prove that 𝑠 ∈ 𝑄 [𝑓 (𝑥)/𝑦] (this requires the assumptions that g is the right inverse of 𝑓 and

that 𝑠′ .𝑦 is in the image of 𝑓 ). Moreover, we have that 𝑠 .𝑥 ∈ image(g). Thus we have 𝑠 ∈ 𝑃 .
Let 𝜇 be any mapping. We construct 𝜇′ as follows:

𝜇′
def

= 𝜇

 𝑥 B

{
𝑠′ .𝑦 if 𝑥 = 𝑦

g(𝑠′ .𝑦) if otherwise

𝑦 B 𝑠′ .𝑦


We prove that 𝑠 [𝑉 − 𝑦 + 𝑥 B 𝜇]

𝑦 ← 𝑓 (𝑥 )
−−−−−−−−→ 𝑠′ [𝑉 B 𝜇′]. From this, the conclusion follows. □

Completeness concerns both the question 1.) whether for any result every valid presumption is

derivable, and 2.) whether for any set of irrelevant result-variables the largest valid set of irrelevant

presumption-variables can be generated.

We first consider 2.). The proof system is not complete in this regard. Consider the following

triple:

⟨True ⊥⊥ {𝑡,𝑤}⟩ 𝑡 ← 𝑤 ;𝑤 ← 0 ;𝑦 ← 𝑤 ; 𝑤 ← 𝑡 ⟨True ⊥⊥ {𝑡,𝑤}⟩
This triple holds, all result states are reachable from some presumption-state, and in the presumption

variables 𝑡 and𝑤 do not matter. However, the rule Assign from Figure 1 removes variable w from

the set of irrelevant variables. Thus we can only derive:

⟨True ⊥⊥ {𝑡}⟩ 𝑡 ← 𝑤 ;𝑤 ← 0 ;𝑦 ← 𝑤 ; 𝑤 ← 𝑡 ⟨True ⊥⊥ {𝑡,𝑤}⟩

In other words, the proof system does not enable us to prove that variable𝑤 is irrelevant.

For this reason, completeness can only be proven relative to the set of irrelevant variables

generated while deriving a presumption. Given the initial set𝑉 ′ of irrelevant variables in the result,

that set can be computed by traversing program 𝐶 backwards. For each assignment the written

(read) variable is added (subtracted) to the set. For each if-then-else statement, the intersection

is taken after traversing both branches. The set of irrelevant presumption-variables generated

in this fashion – given program 𝐶 and set of irrelevant result-variables 𝑉 ′ – is denoted with

irrelevant(𝐶,𝑉 ′).
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With respect to 1.), rule Assign generates a presumption with a constraint over variable 𝑥 only,

and no constraints that combine the inputs to the assignment with other variables. Consider, e.g.,

the following valid triple:

⟨𝑤 + 𝑥 = 10 ⊥⊥ {𝑦}⟩ 𝑦 ← 𝑥 ⟨𝑦 ≤ 10 ⊥⊥ {𝑤, 𝑥}⟩
This triple is not derivable. The proof system only allows to derive a presumption 𝑥 ≤ 10.

Thus we must formulate that a presumption treats a (set of) variables as detached from other

variables:

Definition 2.11. Variable 𝑥 is detached in predicate 𝑃 , notation detached(𝑥, 𝑃), if and only if:

∀𝑠 ∈ 𝑃, 𝑣 ∈ VS(𝑥, 𝑃) · 𝑠 [𝑥 B 𝑣] ∈ 𝑃

In words, for any 𝑃-state 𝑠 , the current value of 𝑥 in 𝑠 can be replaced with another value for

𝑥 that satisfies 𝑃 , and the result still satisfies 𝑃 . For example, in the property 𝑥 < 10 ∧ 𝑦 < 𝑧,

variable 𝑥 is detached. In the above example, variable 𝑥 is not detached in the presumption as its

value influences the value of 𝑤 . The definition can be formulated similarly when 𝑥 is a tuple of

multiple variables, for assignments with multiple inputs.

For presumptions where all input variables are detached, the proof system in Figure 1 is complete.

The rules for dealing with loops, if-statements and sequence are complete. We have formalized

this, by stating that if hypothetically there would be a rule Assign for assignments that introduces

undetached presumptions, then the proof system is complete.

Theorem 2.12 (Completeness). Assume that there exists some rule Assign_Undetached such
that for any presumption 𝑃𝑈 and result 𝑄 :
¬detached(𝑥, 𝑃𝑈 ) 𝑦 ∉ 𝑉 ′ |= ⟨𝑃𝑈 ⊥⊥ 𝑉 ⟩ 𝑦 ← 𝑓 (𝑥) ⟨𝑄 ⊥⊥ 𝑉 ′⟩

Assign_Undetached⊢ ⟨𝑃𝑈 ⊥⊥ 𝑉 ⟩ 𝑦 ← 𝑓 (𝑥) ⟨𝑄 ⊥⊥ 𝑉 ′⟩
then the proof system in Figure 1 together with rule Assign_Undetached is complete for any pre-
sumption 𝑃 and set of irrelevant variables 𝑉 such that 𝑉 ⊆ irrelevant(𝐶,𝑉 ′):

|= ⟨𝑃 ⊥⊥ 𝑉 ⟩ 𝐶 ⟨𝑄 ⊥⊥ 𝑉 ′⟩ =⇒ ⊢ ⟨𝑃 ⊥⊥ 𝑉 ⟩ 𝐶 ⟨𝑄 ⊥⊥ 𝑉 ′⟩

Proof. The theorem has been formalized and proven in the Isabelle/HOL theorem prover [5, 11,

26]. We here discuss the proof for rule Assign as example.

We must prove that assuming (A) a triple with presumption 𝑃 and result 𝑄 holds, then it can

be derived. There are various cases possible. Consider the case where variable 𝑦 is relevant in the

result (𝑦 ∉ 𝑉 ), variable 𝑥 is irrelevant (𝑥 ∈ 𝑉 ), and variable 𝑥 is detached in 𝑃 . We first prove that

assumption (A) implies that for all values in the value set of 𝑦 in 𝑄 , there exists some value in the

value set of 𝑥 in 𝑃 that can be used to compute the 𝑦-value:

∀𝑣𝑦 ∈ VS(𝑦,𝑄) · ∃𝑣𝑥 ∈ VS(𝑥, 𝑃) · 𝑓 (𝑣𝑥 ) = 𝑣𝑦

From this, it is possible to construct the right inversion g (this uses the axiom of choice). We define

𝑃
strong

as follows:

𝑃
strong

def

= 𝑄 [𝑓 (𝑥)/𝑦] ∧ 𝑥 ∈ image(g)
We then prove that 𝑃

strong
=⇒ 𝑃 . What we actually prove is that each state in 𝑃

strong
implies

the existence of a state 𝑠0 in 𝑃 , such that states 𝑠 and 𝑠0 agree on all values but the value for 𝑥 . Since

that variable is detached in 𝑃 , that implies that state 𝑠 is in 𝑃 as well.

Finally, we prove that 𝑄 necessarily implies that 𝑦 is in the image of 𝑓 , since otherwise result 𝑄

would model unreachable states which violates assumption (A).

We can now show that the triple is derivable, by deriving it as follows:
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x ← y x ← z

y ← y+1

x = 0

y = 0 ∧ 𝑏

E

z = 0 ∧ ¬𝑏

z = 0 ∧ ¬𝑏

Fig. 2. Backwards exploration up to the entry point.

((((((((
g =
←−
𝑓 on VS(𝑦,𝑄) ((((((((

𝑥 ≠ 𝑦 =⇒ 𝑥 ∈ 𝑉 (((((((((
𝑄 =⇒ 𝑦 ∈ image(f)

⟨𝑃
strong

⊥⊥ 𝑉 + 𝑦 − 𝑥⟩ 𝑦 ← 𝑓 (𝑥) ⟨𝑄 ⊥⊥ 𝑉 ⟩ (((((((𝑃
strong

=⇒ 𝑃

⟨𝑃 ⊥⊥ 𝑉 + 𝑦 − 𝑥⟩ 𝑦 ← 𝑓 (𝑥) ⟨𝑄 ⊥⊥ 𝑉 ⟩
This finishes the proof for the case where 𝑦 ∉ 𝑉 , 𝑥 ∈ 𝑉 and 𝑥 is detached in 𝑃 . The other cases, e.g.,

the case where 𝑥 and 𝑦 both are relevant, are proven using different derivations. □

3 Proof Strategies
Underapproximation allows to “pick a path”, and that comes with the task to find the right path. It

may be the case that one traverses a program backwards, but cannot complete the path all the way up

to the entry point. In such cases, one must backtrack and pick a different path. Underapproximation,

thus, causes a backwards traversable search space, where a path towards the entry point needs to be

found. As soon as the entry point is hit, backwards exploration can stop and unexplored paths need

not be visited. Note that generating a false presumption is success: that proves unsatisfiability of the

result. However, it may be the case that no rules can be applied to some intermediate presumption.

Consider the program 𝑦 ← 𝑦 + 1 ; If 𝑏 Then 𝑥 ← 𝑦 Else 𝑥 ← 𝑧 and result x = 0 with 𝑏 an

irrelevant variable (x, y and z are natural numbers). Both rules ITE_Irrelevant_* can be applied,

but only one will lead to the entry point. See Figure 2: the intermediate presumption y = 0 ∧ 𝑏 is

unreachable, even though the original result was reachable.

Similarly, the underapproximative rule Assign can lead to a path that cannot reach the entry

point. Consider the program 𝑥 ← 𝑥 + 10; 𝑦 ← 𝑥 + 4 % 7 with result 𝑦 = 4. For the second part of

the program, we have derived presumption 𝑥 = 0 in Example 2.3. However, if 𝑥 is a natural number,

such states are unreachable after execution of 𝑥 ← 𝑥 + 10, since 0 is not in the image of +10. We

should have proven a presumption where 𝑥 is at least 10. In context of the larger program, we have

instantiated function g wrongly.

Finally, rule While also is underapproximative, as it requires instantiation of an iteration count n.
If choosen wrongly, an intermediate presumption may become unreachable. For example, one can

always choose a path where n = 0, but the result may only be reachable after the loop body has

been executed at least once.

In this section, we discuss approaches to reduce this search space.

3.1 Delaying Underapproximation
Consider again the program 𝑥 ← 𝑥 + 10; 𝑦 ← 𝑥 + 4 % 7 with result 𝑦 = 4. Instead of

instantiating g with a specific image (that may be the wrong choice), we can instantiate g such

that g(𝑦) = (𝑦 − 4 % 7) + 7x0, leaving meta-variable x0 uninstantiated. We have 𝑥 ∈ image(g) ←→
7x0 ≤ 𝑥 < 8x0. We first derive:
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𝑦 = 4 =⇒ 𝑦 ≤ 7

Assign⟨𝑥 %7 = 0 ∧ 7x0 ≤ 𝑥 < 8x0 ⊥⊥ {𝑦}⟩ 𝑦 ← 𝑥 + 4 % 7 ⟨𝑦 = 4 ⊥⊥ {𝑥}⟩
Then, the assignment rule is applied again:

7x0 ≤ 𝑥 < 8x0 =⇒ 𝑥 ≥ 10

Assign⟨𝑥 %7 = 4 ∧ 7x0 ≤ 𝑥 + 10 < 8x0 ⊥⊥ {𝑦}⟩ 𝑥 ← 𝑥 + 10 ⟨𝑥 %7 = 0 ∧ 7x0 ≤ 𝑥 < 8x0 ⊥⊥ {𝑦}⟩
Combined, this produces:

7x0 ≤ 𝑥 < 8x0 =⇒ 𝑥 ≥ 10 𝑦 = 4 =⇒ 𝑦 ≤ 7

Seq⟨𝑥 %7 = 4 ∧ 7x0 ≤ 𝑥 + 10 < 8x0 ⊥⊥ {𝑦}⟩ 𝑥 ← 𝑥 + 10; 𝑦 ← 𝑥 + 4 % 7 ⟨𝑦 = 4 ⊥⊥ {𝑥}⟩
At this point, we have gone backwards and reached the entry point of the program. We can now

instantiate a value for x0 by asking an SMT solver [12] to find a model where all assumptions hold:

∃x0 ·
{
∀𝑥 · 7x0 ≤ 𝑥 < 8x0 =⇒ 𝑥 ≥ 10

∀𝑦 · 𝑦 = 4 =⇒ 𝑦 ≤ 7

For example, this may produce x0 = 3. After instantiation, the derived triple simplifies to:

⟨𝑥 = 11 ⊥⊥ {𝑦}⟩ 𝑥 ← 𝑥 + 10; 𝑦 ← 𝑥 + 4 % 7 ⟨𝑦 = 4 ⊥⊥ {𝑥}⟩
The point here is that by leaving variables uninstantiated, one can traverse the program back-

wards towards the entry point, and then use an SMT solver to discharge the generated assumptions.

We provide another example of this, showing how an SMT solver can be used to find specific

iteration counts. Consider the program 𝑥 ← 𝑥 + 4; 𝑊 with𝑊 from Example 2.6 and a result

where 𝑥 = 16. We instantiate P such that P(𝑛′) returns true iff 𝑥 = x0 + 2𝑛′. We start from the

result going backwards:

⟨𝑥 = x0 + 2𝑛′ ⊥⊥ 𝑉 ⟩ 𝑥 ← 𝑥 + 2 ⟨𝑥 = x0 + 2(𝑛′ + 1) ∧ 𝑛′ < n ⊥⊥ 𝑉 ⟩ 𝑥 = 16 =⇒ 𝑥 = x0 + 2n
⟨𝑥 = x0 ⊥⊥ 𝑉 ⟩𝑊 ⟨𝑥 = 16 ⊥⊥ 𝑉 ⟩

Note that meta-variables x0 and n must be instantiated with values. However, we can delay this

instantiation, since the triple in the assumption can be derived for all x0 and n. Thus, we first
derive:

x0 ∈ image(+4)
⟨𝑥 + 4 = x0 ⊥⊥ 𝑉 − 𝑥⟩ 𝑥 ← 𝑥 + 4 ⟨𝑥 = x0 ⊥⊥ 𝑉 ⟩

The sequence rule can now be applied, producing:

x0 ∈ image(+4) 𝑥 = 16 =⇒ 𝑥 = x0 + 2n
⟨𝑥 + 4 = x0 ⊥⊥ 𝑉 − 𝑥⟩ 𝑥 ← 𝑥 + 4; 𝑊 ⟨𝑥 = 16 ⊥⊥ 𝑉 ⟩

For natural numbers, the image of +4 simply amounts to values greater-equal to 4. This shows

that if we instantiate x0 and n appropriately, states where 𝑥 = 16 are reachable from states where

𝑥 + 4 = x0. We thus ask an SMT solver to find values for x0 and n such that the assumptions for

both the While and Assign rule hold:

∃x0,n ·
{
∀𝑥 · 𝑥 = 16 =⇒ 𝑥 = x0 + 2n
x0 ∈ image(+4)

The assumptions can be send to an SMT solver, producing a model where x0 = 6 and n = 5. This

shows that states where 𝑥 = 16 are reachable from initial states where 𝑥 + 4 = 6, after 5 iterations

of the loop.
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3.2 Using Loop Summaries to Derive UIL Triples
Example 2.6 shows that in order to derive a UIL triple for loops, one needs to find a parameterized

predicate 𝑃 that is “backwards inductive”. This neatly can be solved using loop summaries [15, 18,
30, 32, 35, 36]. Loop summaries are typically used in symbolic execution to overapproximate the

behavior of snippets of code. They can be an effective technique in battling path explosion.

A summary 𝜎𝜄 is an assignment of symbolic expressions to variables. Each symbolic expression

models the value of a variable after 𝜄 iterations of a loop. Figure 3 provides an example. Note that

not all variables need to be summarized: if it is not possible to find a closed-form expression, the

summary may omit the variable. We use 𝑉𝜎 to denote the set of variables summarized by loop

summary 𝜎𝜄 , and 𝑉\𝜎 to denote the set of variables not summarized.

for (; i<z; i++) {
w += 10;
x += w + i;
y = y3;

}

𝜎𝜄 (w) B w + 10𝜄
𝜎𝜄 (x) B x + 𝜄 · w + 𝜄 (𝜄+1)

2
· 10 + 𝜄 · i + 𝜄 (𝜄−1)

2

𝜎𝜄 (i) B i + 𝜄
𝜎𝜄 (z) B z

Fig. 3. Example of loop summary.

Instantiation of parameterized predicate P can occur by substituting in 𝑄 variables with their

summaries. We use notation 𝑄⟦𝜎𝜄⟧ to denote this, i.e., each variable in 𝑉𝜎 is replaced with its

summary, and all other variables becomes ⊤ (unknown). In 𝑄 , zero further iterations need to

happen. In the generated presumption, n iterations need to happen. Thus we generate the predicate:

𝑄⟦𝜎n−𝑛′⟧
The intuition is that after 𝑛′ iterations from the presumption, n−𝑛′ more iterations need to happen

to reach a 𝑄-state. Note that for 𝑛′ = n, i.e., when 0 more iterations need to happen, we have

𝑄⟦𝜎n−n⟧ = 𝑄 , as long as 𝜎0 is the identity function. The presumption of the while loop sets 𝑛′

to 0.

In the same fashion, we can construct 𝑏⟦𝜎𝜄⟧ by doing substitutions in branching condition 𝑏. This

allows to express that each further iteration of the loop body should start in a state where branching

condition 𝑏 holds: ∀𝑛′′ < n − 𝑛′ · 𝑏⟦𝜎𝑛′′⟧. Combined, these two expressions provide a presumption

that models a state where the loop has been executed 𝑛′ times and requires n−𝑛′ further iterations
to complete. The final iteration is the first iteration in which the branching condition does not hold,

in all other iterations it does hold.

Given result 𝑄 and branching condition 𝑏, we construct the instantiation of parameterized

predicate P as follows:

P𝑄,𝑏

n,𝜎 (𝑛
′) ≡

{
𝑄⟦𝜎n−𝑛′⟧

∧ ∀𝑛′′ < n − 𝑛′ · 𝑏⟦𝜎𝑛′′⟧
Definition 3.1. A summary 𝜎 is backwards inductive for result 𝑄 , program 𝐶 , and branching

condition 𝑏, notation bw_inductive(𝜎,𝑄,𝐶,𝑏), if and only if, 𝜎0 is the identity function and for all n
and 𝑛′:

|= ⟨P𝑄,𝑏

n,𝜎 (𝑛
′) ⊥⊥ 𝑉\𝜎 ⟩ 𝐶 ⟨P𝑄,𝑏

n,𝜎 (𝑛
′ + 1) ∧ 𝑛′ < n ⊥⊥ 𝑉\𝜎 ⟩

Example 3.2. The summary in Figure 3 is backwards inductive. Consider variable 𝑖 , and a result

𝑖 = 100. A presumption where 𝑛′ iterations have already occurred, contains 𝑖 + n − 𝑛′ = 100. The

presumption for iteration 𝑛′ + 1 contains 𝑖 + n − 𝑛′ − 1 = 100. Iteration 𝑛′ + 1 is reachable from
iteration 𝑛′.
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Theorem 3.3. The following derivation is sound:
bw_inductive(𝜎,𝑄,𝐶,𝑏) 𝑄 =⇒ ¬𝑏
⟨P𝑄,𝑏

n,𝜎 (0) ⊥⊥ 𝑉\𝜎 ⟩ While 𝑏 Do 𝐶 ⟨𝑄 ⊥⊥ 𝑉\𝜎 ⟩

Proof. The proof follows directly from rule While in Figure 1, where we instantiate P with

function P𝑄,𝑏

n,𝜎 . The first assumption of that rule follows from soundness of summary 𝜎 . We have

to prove that P𝑄,𝑏

n,𝜎 (𝑛′) =⇒ 𝑏 when 𝑛′ < n. This follows from the fact that the term will include

𝑏⟦𝜎0⟧ which is equivalent to 𝑏. The second assumption follows from the fact that:𝑄 =⇒ P𝑄,𝑏

n,𝜎 (n)
which follows directly from the fact that 𝑄⟦𝜎0⟧ = 𝑄 . □

Example 3.4. Consider the code and summary in Figure 3. Let 𝑄 return true iff w > 50 ∧ i ≥ z.
We have:

𝑄⟦𝜎n−𝑛′⟧ = 𝑤 + 10(n − 𝑛′) > 50 ∧ 𝑖 + n − 𝑛′ ≥ 𝑧

𝑏⟦𝜎𝑛′′⟧ = 𝑖 − 𝑛′′ < 𝑧

P𝑄,𝑏

n,𝜎 (𝑛′) = 𝑤 + 10(n − 𝑛′) > 50 ∧
{
𝑖 + n − 𝑛′ = 𝑧 if 𝑛′ < n
𝑖 ≥ 𝑧 if otherwise

We can establish that the summary is backwards inductive by deriving the triple from Definition 3.1

with 𝑉\𝜎 = {y}. Moreover, 𝑄 contains ¬𝑏. We can thus derive the following, by setting 𝑛′ to 0 and

considering any instantiation of n such that n > 0:

⟨𝑤 + 10n > 50 ∧ 𝑖 + n = z ∧ n > 0 ⊥⊥ {y}⟩ While 𝑏 Do 𝐶 ⟨w > 50 ∧ i ≥ z ⊥⊥ {y}⟩

We ask an SMT solver to find values for n, w, i and z, producing 3, 30, 0, and 3. This shows that

states where w > 50 and i ≥ z are reachable from states where w > 30 after 3 iterations, with i
initially 0.

The above proof strategy may lead to the following questions:

• The definition of “backwards inductive” is dependent on both the result 𝑄 and branching

condition 𝑏. Does that mean that a new summary must be found whenever either of these

changes?

• Existing approaches to loop summarization has been done in the context of Hoare Logic and

aims to provide regular invariants, instead of “backwards” invariants. Can existing approaches

to loop summarization be applied here?

Typically, a loop summary is reusable and does not depend on either result 𝑄 and branching

condition 𝑏. Moreover, the techniques to loop summarization as found in existing literature do

apply here. To provide arguments for these two answers, we must first formalize the intuition of

loop summarization in their traditional context of Hoare Logic.

That intuition is that a summary for a program 𝐶 shows that this program can be regarded as

an unordered series of single static assignments for all summarized variables. The values of all

other variables are unknown. To formalize this, we use notation 𝑒 (𝑠) to denote the set of values

that symbolic expression 𝑒 can have in state 𝑠 . Summary 𝜎 summarizes program 𝐶 if and only if:

𝑠
𝐶−→ 𝑠′ =⇒ ∀𝑣 ∈ 𝑉𝜎 · 𝑠′ .𝑣 ∈ 𝜎1 (𝑣) (𝑠)

Revisiting the example in Figure 3, this simply formalizes that the loop body can be formulated as

a concurrent (i.e., non-blocking) series of assignments of the form 𝑣 ← 𝜎1 (𝑣). For example, Line 2

of the loop body can be rewritten to x ← x + w + 10 + i.
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Moreover, the summary must be inductive for all variables 𝑣 ∈ 𝑉𝜎 , which is defined as:

𝜎𝜄+1 (𝑣) = 𝜎𝜄 (𝑣)⟦𝜎1⟧
This property can easily be checked, given a summary. For the summary in Figure 3, we have, e.g.,:

𝜎𝜄+1 (w) = w + 10(𝜄 + 1) = 𝜎𝜄 (w)⟦𝜎1⟧. A consequence of an inductive summary is that for any 𝑄 we

have 𝑄⟦𝜎𝜄+1⟧ = 𝑄⟦𝜎𝜄⟧⟦𝜎1⟧.
Note that the above properties are desirable properties of summaries, regardless of whether

they are used in the context of IL or HL. Existing approaches to summarization aim to provide

summaries that satisfy these properties, even if they are not explicitly formalized as such.

Finally, we formalize that the summary must at least summarize all variables in branching

condition 𝑏, and that the branching condition after one iteration implies that it held in the previous

one:

𝑏⟦𝜎1⟧ =⇒ 𝑏

For the running example, we have i + 1 < z =⇒ i < z.
With these ingredients, we can formulate the following theorem:

Theorem 3.5. Let 𝜎 be an inductive summary that summarizes program𝐶 . Assume 𝑏⟦𝜎1⟧ =⇒ 𝑏.
Then 𝜎 is backwards inductive for any result 𝑄 .

Proof. Let 𝑠′ be a state that satisfies P𝑄,𝑏

n,𝜎 (𝑛′ + 1). We have 𝑠′ satisfies 𝑄⟦𝜎n−𝑛′−1⟧. Since
program 𝐶 is a series of assignments, we can apply rule Assign per assignment. This provides a

state 𝑠 such that 𝑄⟦𝜎n−𝑛′−1⟧⟦𝜎1⟧, where each variable 𝑣 ∈ 𝑉𝜎 is replaced with 𝜎1 (𝑣). Since 𝜎 is

inductive, this is equivalent to 𝑄⟦𝜎n−𝑛′⟧.
Moreover, we have 𝑠′ satisfying ∀𝑛′′ < n − 𝑛′ − 1 · 𝑏⟦𝜎𝑛′′⟧. With the same reasoning as above,

this implies that state 𝑠 satisfies ∀𝑛′′ < n − 𝑛′ − 1 · 𝑏⟦𝜎𝑛′′+1⟧. This implies ∀𝑛′′ < n − 𝑛′ · 𝑏⟦𝜎𝑛′′⟧
using the assumption 𝑏⟦𝜎1⟧ =⇒ 𝑏. □

What Theorem 3.5 shows, is that a summary can be derived from loop body 𝐶 using existing

methods from literature: summaries must summarize program 𝐶 and must be inductive. Such

summaries can be reused for any result, and for any branching condition such that 𝑏⟦𝜎1⟧ =⇒ 𝑏.

The latter assumption is easily checked.

Corollary 3.6. Let 𝜎 be an inductive summary that summarizes program 𝐶 . The following
derivation is sound:

𝑏⟦𝜎1⟧ =⇒ 𝑏 𝑄 =⇒ ¬𝑏
⟨P𝑄,𝑏

n,𝜎 (0) ⊥⊥ 𝑉\𝜎 ⟩ While 𝑏 Do 𝐶 ⟨𝑄 ⊥⊥ 𝑉\𝜎 ⟩

4 Underapproximation, Underspecification and Pointers
A typical challenge of backwards symbolic execution is dealing with pointers. The problem is that

it may be the case that no information is available on the mutual relation of pointers, which causes

path/state space explosion. Consider the code in Figure 4. Clearly, there is a case where pointers 𝑝0
and 𝑝1 are separate and the result can be reached. However, it may also be the case that they alias,

and that parameters x and y were equal. Without any further knowledge, there are more cases

possible due to partially overlapping pointers: it may be the case that 𝑝1 = 𝑝0 − 2, and the last

two bytes of x are the reverse of the first two bytes of y (e.g.: 0xAABBCCDD and 0xCCDDEEFF, for a
little-endian architecture with 4-byte integers). Enumerating all cases when traversing a program

backwards is infeasible.

Underapproximation, however, only requires finding some path fromwhich the result is reachable.

Underspecification enables to express that we do not care about the actual values of pointers (nor
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void foo(int* p0, int* p1, int x, int y) {
*p0 := x;
*p1 := y;
// RESULT: ∗𝑝0 = 𝑥

}

Fig. 4. Example with pointers.

𝑝0 ∈ 𝑉 ′ ∨ 𝑝1 ∈ 𝑉 ′
Store_Irrelevant_Alias⟨𝑄 [𝑥/∗𝑝1] [𝑥/∗𝑝0] ∧ 𝑝0 = 𝑝1 ⊥⊥ 𝑉 ′ − {𝑝0, 𝑝1}⟩ ∗𝑝0 ← 𝑥 ⟨𝑄 ⊥⊥ 𝑉 ′⟩

𝑝0 ∈ 𝑉 ′ ∨ 𝑝1 ∈ 𝑉 ′
Store_Irrelevant_Separate⟨𝑄 [𝑥/∗𝑝0] ∧ 𝑝0 ⊲⊳ 𝑝1 ⊥⊥ 𝑉 ′ − {𝑝0, 𝑝1}⟩ ∗𝑝0 ← 𝑥 ⟨𝑄 ⊥⊥ 𝑉 ′⟩

{𝑝0, 𝑝1} ∩𝑉 ′ = ∅ 𝑄 =⇒ 𝑝0 = 𝑝1
Store_Alias⟨𝑄 [𝑥/∗𝑝1] [𝑥/∗𝑝0] ⊥⊥ 𝑉 ′⟩ ∗𝑝0 ← 𝑥 ⟨𝑄 ⊥⊥ 𝑉 ′⟩

{𝑝0, 𝑝1} ∩𝑉 ′ = ∅ 𝑄 =⇒ 𝑝0 ⊲⊳ 𝑝1
Store_Separate⟨𝑄 [𝑥/∗𝑝0] ⊥⊥ 𝑉 ′⟩ ∗𝑝0 ← 𝑥 ⟨𝑄 ⊥⊥ 𝑉 ′⟩

Fig. 5. Proof Rules for Dealing with Store

their mutual relation) as long as the result is triggered. Thus, the following triple holds:

⟨𝑝0 ⊲⊳ 𝑝1 ⊥⊥ ∅⟩ foo ⟨∗𝑝0 = 𝑥 ⊥⊥ {𝑝0, 𝑝1}⟩
All result-states are reachable from a state where pointers 𝑝0 and 𝑝1 were separate (notation: ⊲⊳).

The following triple holds as well:

⟨𝑥 = 𝑦 ∧ 𝑝0 = 𝑝1 ⊥⊥ ∅⟩ foo ⟨∗𝑝0 = 𝑥 ⊥⊥ {𝑝0, 𝑝1}⟩
All result-states are reachable from a state where pointers 𝑝0 and 𝑝1 were aliassing and 𝑥 = 𝑦.

We can extend the proof system by adding the rules for a Store statement (see Figure 5).

Rules for Load are similar. If the pointers are underspecified, rules Store_Irrelevant_Alias and

Store_Irrelevant_Separate can be applied. They will introduce pointer constraints into the

presumption. If the current result 𝑄 already contains an aliassing or separation constraint, rules

Store_Alias and Store_Separate can be applied. The extended proof system purposefully is

incomplete: it does not provide any rules for introducing partially overlapping pointers.

Remark. The rules in Figure 5 are defined for a result 𝑄 that only contains dereferences ∗𝑝0
and ∗𝑝1. Intuitively, the rules easily extend to results with multiple dereferences, where for each

reference a decision on aliassing or separation must be made. That formalization requires much

more notational clutter, which is why the rules have been presented like this.

One can traverse a program backward, and choose which rule to apply for each dereference

in the result. This is similar to applying rules ITE_Irrelevant_* when branching condition 𝑏 is

underspecified, or instantiating an iteration count nwhen dealing with a loop: in each of these cases,

underapproximation and underspecification allows one to “pick a path” (see Section 3). Instead

of requiring to formulate predicates that model all paths, including paths concerning partially

overlapping pointers, one can pick a path and see if the program can be traversed up to the entry

point.
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∗p
0
← x

p
0
← p

1

∗p
1
= y

∗p
1
= y ∧ p

0
⊲⊳ p

1

E

x = y ∧ p
0
= p

1

x = y

Fig. 6. Backwards exploration up to the entry point.

Example 4.1. Figure 6 provides an example for a program p
0
← p

1
; ∗p

0
← x and result ∗p

1
= y.

First, Rule Store_Irrelevant_Separate is applied, picking a path where the pointers are separate.

The program is traversed backwards, but we hit a point where none of the rules of the proof system

can be applied. Note that Rule Assign cannot be applied, since p
0
is a relevant variable in the

intermediate result. Rule Assign_Relevant_Src cannot be applied since the intermediate result is

not reachable. We thus backtrack, and instead of picking a path of separation, we pick the aliassing

path. This path allows backwards exploration up to the entry point, yielding presumption x = y.

Example Combining a Loop and Array. Consider the code in Figure 7 which contains a write

to memory within a loop. The summary provides symbolic expressions for all variables, and also

expresses that after having executed 𝜄 iterations, an equal amount of memory writes have happened.

for (;i<z;i+=2) {
j += i+1;
a[i] = j;

}
// RESULT:
// 𝑎[𝑥] = 49 ∧ 𝑧 ≥ 𝑖

𝜎𝜄 (i) B i + 2𝜄
𝜎𝜄 (j) B j + i𝜄 + 𝜄2
𝜎𝜄 (z) B z
𝜎𝜄 (x) B x
𝜎𝜄 (𝑎[i + 2𝜅]) B j + i(𝜅 + 1) + (𝜅 + 1)2 (∀0 ≤ 𝜅 < 𝜄)

Fig. 7. Example of loop with array, with a summary.

First, we establish that summary 𝜎 is inductive. For example, for variable 𝑗 , we have:

𝜎𝜄+1 (j) = j + i(𝜄 + 1) + (𝜄 + 1)2 = (j + i𝜄 + 𝜄2)⟦𝜎1⟧ = 𝜎𝜄 (j)⟦𝜎1⟧
Second we establish that 𝑏⟦𝜎1⟧ =⇒ 𝑏, i.e., i + 2 < 𝑧 =⇒ i < 𝑧. Corollary 3.6 shows that we can

now use summary 𝜎 to do substitutions in a result 𝑄 .

First, consider a path where all state parts (i.e., variables and memory regions) that the summary

writes to are separate from the region a[x] and where i and j are initialized with 0. In that case,

the presumption contains (assuming array a contains 1-byte elements):

a[x] = 49 ∧ (∀0 ≤ 𝜅 < n · a + x ⊲⊳ a + 2𝜅)
This formulates a presumption that index x points to anywhere outside of the memory of array a
accessed during n iterations, and that a[x] already stores value 49.

However, it may also be the case that the summary provides some state part that aliases with

region a[x]. In that case, the presumption will contain:

∃0 ≤ 𝜅 < n · (𝜅 + 1)2 = 49 ∧ a + x = a + 2𝜅
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The iteration count n should at least be 7, with 𝜅 = 6. This formulates that if there are at least 7

iterations and x = 12, then the result can be reached.

We consider a full formalization of combining loop summaries with memory out of scope.

However, the above suggests how the theory in Section 3.2 can be extended. First, a summary no

longer is a simple assignment of symbolic expressions to variables, but an assignment of symbolic

expressions to state parts. The summary itself should consider separate state parts only. For example,

all state parts of the summary in Figure 7 are separate. Then rule Store_Irrelevant_Alias then

can be used existentially, i.e., there must exist some summarized state part that aliases with the the

state part in the result. Rule Store_Irrelevant_Separate can be used universally, i.e., there is a

path where all summarized state parts are separate from the state part in the result.

5 Putting UIL into Practice
We implemented a predicate transformer based on the proof system in Figures 1 and 5 for the

LLVM IR. The implementation, called Broil (Backwards Reasoner over Incorrectness Logic) starts

at an assertion with some symbolic set of irrelevant variables𝑉 . As soon as a variable can either 1.)

not be summarized (in case of a loop), or 2.) not be inversed (in case of an assignment), we assume

that it was part of𝑉 and thus treat it as an irrelevant variable. The first typically happens in case of

non-linear loop variables. The second typically happens in case of floating-point operations, since

we do not support them. Considering the example in Figure 3 and a result formulating a constraint

over variable 𝑦, Broil substitutes ⊤ for y and assumes variable y is irrelevant in the result. Thus

the following triple could be generated for symbolic set 𝑉 :

y ∈ 𝑉 ∧ i ∉ 𝑉 ∧ z ∉ 𝑉 =⇒ ⟨⊤ = 0 ∧ i ≥ z ⊥⊥ 𝑉 ⟩ 𝐶 ⟨y = 0 ∧ i ≥ z ⊥⊥ 𝑉 ⟩

In other words, no presumption was generated for the result that included 𝑦 = 0, but for the result

⊤ = 0 ∧ i ≥ z.
Once a presumption is generated, conjuncts that evaluates to⊤ are dropped (through precondition

weakening) before sending it to an SMT solver to find amodel. In the above example,⊤ = 0 evaluates

to ⊤ and thus we ask an SMT solver to find a model for i ≥ z. The presumption has become

– significantly – weaker than it would have been if variable 𝑦 were properly summarized. It may

even be the case that an unreachable assertion does generate a presumption. In the above example,

if the result states 𝑦 = 2 (which is not a cube), Broil will generate the same presumption as above:

⊤ ∧ i ≥ z and consider the constraint over y irrelevant.

Broil treats if-statements underapproximatively, i.e., whenever possible it picks a path to see if

the entry point of the program can be reached. For assignments and loops, we “zoom in” as little as

possible and instead use the proof strategy of delaying underapproximation whenever possible (see

Section 3). We implemented a loop summarization technique from scratch that is also capable of

summarizing memory accesses to arrays in loops. Our summarization technique leverages existing

work [30, 32]. We utilized a Linux machine with Intel Core i7-8086K CPU, 32GB of RAM, and Z3

for SMT solving.

We applied Broil to programs from the SV-COMP benchmark suite
1
. The SV-COMP benchmark

is specially created for testing and verifying tools. The benchmark provides different categories of

programs where each category represents a set of verification tasks. The tasks were contributed

by several research and development groups. The programs are indicative of the complexity of

programs that is found in real-world programs. For many of the functions in SV-COMP, the ground

truth is available in the form of an annotation that tells whether the assertion is expected to be

triggerable or not. For the evaluation we narrow the scope to the set of functions 𝐹 for which the

1
https://github.com/sosy-lab/sv-benchmarks/
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ground truth is available. The ground truth partitions the set of all functions 𝐹 into two sets 𝐹𝑈
and 𝐹𝑅 for functions with unreachable and reachable assertions. This set contains all SV-COMP

programs that fall within scope, i.e., non-concurrent programs with source-level assertions that

are compilable to LLVM. The benchmarks includes various types of loops, data structures and

arrays. Additionally, we hand-crafted 42 micro-benchmark programs that are made to demonstrate

different cases related to pointers, loops, and arrays. We named and categorized the hand-crafted

micro-benchmarks according to the types of cases they handle: hand-crafted loop, hand-crafted

mixed, and hand-crafted pointer. The main reason for adding these benchmarks on top of the SV-

COMP benchmark suite is to expose Broil to programs where pointers influence the reachability

of assertions.

The purpose of the prototype implementation is to demonstrate with an implementation how UIL

can be put to practice, and how precise a straightforward implementation is. This heavily depends

on which loop summarization technique is used: the more variables can be summarized, the fewer

⊤-substitutions will happen. It also depends on how hard it is to find a function g that inverses

a computation. We do not aim to demonstrate scalability: the SV-COMP benchmarks generally

consists of small challenges. All running times are below a hundred seconds.

For functions in 𝐹𝑈 , we expect that when asking Z3 to find a model where all assumptions

made during presumption generation hold, it will produce UNSAT. So for this case, we report the

percentage of functions in 𝐹𝑈 for which we have generated unsatisfiable assumptions. We call

the percentage of functions with unreachable assertions for which Broil generates unsatisfiable
assumptions the UNSATSuccesRate. A score of 100% would mean that none of the unreachable

assertions lead to a presumption. If lower, then this is due to ⊤-substitution.
For functions in 𝐹𝑅 preciseness intuitivelymeans that the presumption contains strong constraints

over variables. We therefore measure how many tries a fuzzer takes to trigger the assertion without

any further guidance (𝑇 ). We also measure how many of these tries satisfied the presumption

(𝑇𝑆𝐴𝑇 ). We compute the ratio
𝑇𝑆𝐴𝑇
𝑇

, which we call the reduction factor. If the reduction factor is close

to 1, then the presumption contained weak constraints. This would happen if all presumptions are

trivial. If the number is close to 0 then the presumption is strong. In other words, if this factor is
1

𝑓
,

then the presumption reduces the space of initial states 𝑓 times.

We have used the LibFuzzer as fuzzer [1]. LibFuzzer, part of the LLVM project, is a coverage-

guided fuzzing engine that links with libraries under test to maximize code coverage [31]. It operates

by feeding fuzzed inputs via a specific entry point, tracking code areas reached, and generating

mutations based on a corpus of sample inputs. We thus measure for each try starting from an entry

point whether the inputs (i.e., the initial states) satisfy the presumption generated by Broil.
Table 2 presents results. On average, the percentage of unsatisfiability for unreachable assertions,

the UNSATSuccesRate, is 64%. On average, the reduction factor for reachable assertions is 0.20. Note

that the categories of SV-COMP neatly expose both strengths and weaknesses of our prototype: for

examples with complex loops (such as category loop-crafted) the reduction factor is worse than

for programs with simple ones (such as category array-programs). Also, there are cases where the

assertions are necessarily reachable, i.e., all initial states lead to the assertion. Those cases have a

reduction factor of 1.00, but that is the best result possible. This holds for six out of the total of 310

functions.

The prototype Broil presented in this paper is not intended as an improvement over state-of-

the-art tools such as Pulse-X [22] or Infer [8]. Indeed, it reports a relatively high false positive rate,

due to ⊤-substitution. Its sole purpose is to evaluate through an implementation the precision of

using UIL with loop summaries. This produced insight into current limitations, and directions for
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Table 2.
Benchmarks ran by Broil

Category |F| |FU | UNSATSuccesRate (%) |FR | Reduction Factor
array-cav19 13 13 62 0 -

array-crafted 20 20 90 0 -

array-example 87 59 81 18 0.004

array-fpi 137 69 28 68 0.086

array-industry-pattern 12 6 100 3 0.007

array-lopstr16 10 10 40 0 -

array-multidimensional 20 20 75 0 -

array-patterns 30 30 100 0 -

array-programs 16 14 21 2 0.0008

array-tiling 25 23 43 2 -

bitvector 27 23 26 4 0.8

bitvector-loops 3 0 - 1 1.00

float-benchs 58 48 0 2 0.01

floats-esbmc-regression 39 35 17 0 -

forester-heap 38 21 10 12 0.027

ldv-regression 35 25 8 5 0.003

list-properties 11 5 60 5 1.00

loop-acceleration 36 20 50 6 0.077

loop-crafted 7 6 83 1 1.00

loop-floats-scientific-comp 7 4 0 3 1.00

loop-industry-pattern 2 2 0 0 -

loop-invariants 7 7 0 0 -

loop-invgen 9 8 63 1 0.33

loop-lit 11 10 30 1 1.00

loop-new 2 2 0 0 -

loop-simple 0 0 - 0 -

loop-zilu 22 22 27 0 -

loops 48 26 62 18 0.19

loops-crafted-1 48 40 33 0 -

nla-digbench 32 27 33 5 0.21

nla-digbench-scaling 436 285 46 146 0.26

uthash-2.0.2 126 126 90 0 -

hand_loop 9 0 - 4 0.02

hand_mixed 2 0 - 2 0.045

hand_pointer 2 2 100 0 -

future research. The high false positive rate is largely due to 1.) coarse loop summaries, and 2.) lack

of support for floating point operations. In order to make a scalable bug-finding tool that is formally

underapproximative and based on a formal logic such as UIL, we argue the next step should be to

leverage function summarization on top of loop summarization such as suggested by Godefroid [16].

Moreover, the tool should be sufficiently efficient so that it can improve state-of-the-art fuzzing

tools by reducing the initial state space to be explored.
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6 Related Work and Conclusion
Program logics [14, 19] and predicate transformation [13] have been a base for program verification

for decades. This paper is heavily inspired by incorrectness logic [27]. Table 3 presents an overview,

partially inspired by the taxonomy of Ascari et al. [2], as well as the overview provided by Ball et

al. [4]. Each logic has its own merits, use cases, and challenges.

Definition Name(s) Intuition BR
post[𝐶] (𝑃) ⊆ 𝑄 HL [19] 𝑃-states fail or must lead to 𝑄-

states.

✓

𝑃 ⊆ pre[𝐶] (𝑄) Lisbon Triples

Possible Correctness [20]

Sufficient IL [2]

Backwards Underappr. [25]

must+-transition [4]

𝑃-states can lead to 𝑄-states. ✓

pre[𝐶] (𝑄) ⊆ 𝑃 NC [2, 10] reachable 𝑄-states must come

from a 𝑃-state.

✓

𝑄 ⊆ post[𝐶] (𝑃) IL [27]

Reverse HL [34]

must−-transition [4]

𝑄-states can come from a 𝑃-state. ✗

𝑃 ∩ pre[𝐶] (𝑄) ≠ ∅
𝑄 ∩ post[𝐶] (𝑃) ≠ ∅

may-transition [4] Some 𝑃-state can lead to a𝑄-state. ✓

Table 3. Program Logics: HL = Hoare Logic, IL = Incorrectness Logic, NC = Necessary Conditions, BR =
Backwards Reasoning. pre is the weakest possible pre of a relation. Note that both definitions of may-
transitions are logically equivalent.

Table 3 shows that – except for IL – all logics permit backwards reasoning: generating a pre-

condition (or presumption) from a postcondition (e.g., an assertion in the program). Backwards

reasoning for HL is well-known. With respect to NC, Cousot et al. define and address the problem of

generating necessary preconditions: infer a precondition such that, if violated, ensures the program

will always be incorrect [10]. For Lisbon triples, Möller et al. suggest a Kleene algebra that can

serve as a foundation for backwards reasoning [25] (even though they do not flesh this idea out

fully). Backwards reasoning over may-transitions essentially boils down to standard backwards

model checking of reachability properties [9]. For IL, however, a backwards reasoning system does

not exist. This is exactly the gap that this paper aims to address.

Since O’Hearn’s paper on IL, that logic has been extended and used in various ways. Raad et

al. combine IL with separation logic [28]. This adds program constructs such as alloc and free
to the programming language. The predicates are extended with constructs that convey that a

certain value is an addressable location in memory, but also that it has been deallocated, as well as
ownership of the location. Section 4 of this paper adds basic Load and Store program constructs,

but does not deal with dynamic memory management. The work of Raad et al. thus strongly

complements our contribution. Later, Raad et al. extended their Incorrectness Separation Logic with

concurrency [29]. The resulting logic can be used for bug-catching in concurrent programs, i.e., race

detection, deadlock detection, and memory safety error detection. Both logics have been proven

sound, but no statements on completeness are made. Another extension of IL is Vanegue’s Adversial
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Logic [33], that extends IL with an adversary. It can be used to analyze security vulnerabilities due

to interaction between a program and its environment.

Static analysis tools and bug finders based on underapproximation, such as KLEE [7] and

DART [17], do – ideally – not suffer from false positives. Le et al. provide Pulse-X, a tool for

underapproximative reasoning based on ISL which rigorously focuses on not reporting false posi-

tives [22]. They show that Pulse-X scales, and has performance comparable to tools such as Coverity

or Infer. Those tools generally leverage modular reasoning at the cost of false positives (and thus

not being truly underapproximative).

Recently, efforts have been undertaken to unify reasoning over correctness and incorrectness

within a single framework [6, 24, 25, 37]. Outcome Logic concerns triples that generalize the

predicates used as pre- and postcondition to predicates over outcome monoids (e.g., sets of states
or probability distributions) [37]. Zilberstein et al. then generalize this further to semirings, and

also combine OL with separation logic [38]. Li et al. combine OL with termination reasoning [23].

Consider for sake of explanation the case where the outcome monoid is instantiated as “a set of

states”. Without further special logical operators, the definition of an Outcome Triple is akin to

the conjunction of a Hoare and a Lisbon triple. However, the structure of Outcome Logic allows

the introduction of an outcome conjunction operator ⊕ that allows to specify that two outcomes

are possible. That operator also introduces underapproximation: 𝑄 ⊕ 𝑇 formulates that outcomes

according to predicate𝑄 are possible, as well as trivial ones (𝑇 is the trivial outcome). Note, however,

that the notion of underapproximation in their paper essentially is postcondition weakening: one

can “drop outcomes” by considering them to be trivial. Dually, underapproximation in IL is based

on postcondition strengthening: one can “drop outcomes” by considering them to be false. An

interesting future endeavor would be to explore the dual of Outcome Logic: a logic whose triples

relate to a conjunction over IL Triples and Necessary Conditions.

O’Hearn advocated the use of formal logic to reason over program incorrectness, giving bug-

finding tools the same mathematical rigor that underlies verification tools. Incorrectness Logic

is an underapproximative logic that allows to specify as a result a set of possible outcomes. It

aims at proving that a program can produce at least the desired results. For regular IL, it is not

necessarily possible to do backwards reasoning: transform a result into a presumption. We show

that if one introduces the concept of underspecification, then there exists a sound backwards

reasoning proof system for IL, complete for a subset of presumptions. This means that one can

derive a presumption if and only if all result-states are reachable from some presumption-state. We

think that IL, combined with separation logic, loop- and function summaries, and underspecification

can be the logical foundation for scalable and applicable bug-finding tools, and more generically

for tools that aim to prove that a program can at least produce the desired results.
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