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Abstract
We present two system services – the storage service and the file
system service designed for private cloud environments to facilitate
file sharing across different virtual machines (VMs). Our services are
scalable, fault-tolerant, and deliver excellent performance. These
system servers are implemented as unikernels running atop of
the Xen hypervisor. Additionally, our storage service can leverage
NetBSD code, enabling support for a wide range of both legacy and
modern storage devices, such as NVMe. Furthermore, the storage
service addresses the challenge of transparent fault recovery for
storage, a complex task for stateful subsystems, without incurring
significant overhead – a well-known challenge in storage systems.
Our file system service is designed to be copy-free, enhancing
overall performance. We have also designed an inter-VM communi-
cation (IVMC) mechanism that fosters scalability and reliability by
leveraging lock-free concurrent ring buffers. Since this mechanism
is lock-free, our system services communicate with application
VMs in a more scalable manner compared to traditional ring buffers
used in hypervisors such as Xen. Our lock-free design also aids in
restoring storage states during the fault recovery process of the
storage server. Our evaluation results demonstrate that our system
services achieve performance comparable to that of Linux.
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1 Introduction
In certain enterprise systems,1 a private cloud is used to run multi-
ple applications in separate VMs. The main idea, also implemented
in well-known open-source systems such as Qubes OS [59], is to
1Paper authors were previously involved in building a similar system, SAVIOR [49].
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isolate individual applications in separate VMs and run them atop
of a hypervisor, e.g., Xen [9], in the environment that is controlled
by the enterprise. Applications may belong to the same or different
tenants, and the user and application activity can be monitored by
built-in sensors to detect malicious behavior in the private cloud.

This private cloud does not necessarily run on dedicated servers,
it can use bare metal instances [4] or dedicated hosts [5] of pub-
lic clouds such as Amazon EC2, effectively turning the private
cloud into a subcloud. Furthermore, application VMs can be built
from unikernels [29], a single-application library OS, due to their
lightweightness and memory efficiency. Alternatively, VMs can be
a mixture of unikernel and Linux OS instances [47].

There are two fundamental problems that need to be addressed
within the private cloud: isolation and data sharing. These prob-
lems are in conflict with each other – applications need to run in
separate VMs for better isolation, but VMs typically provide very
limited mechanisms to share data across different VMs. Further-
more, the mechanisms to share data in this (private cloud) environ-
ment should also run in isolation to prevent any interference from
malicious actors.

One way to address these conflicting problems is to use “driver
domains,” special VMs that run drivers and allow sharing I/O across
different VMs. This is exactly what systems such as Qubes OS [59]
are currently doing: they run special Xen driver domains for storage
and networking in dedicated Linux VMs. Furthermore, recent works
proposed to use unikernels [47] for the same purpose. However,
the granularity of such data sharing is often unacceptable for an
enterprise user, especially for storage, where each VM would still
use a virtual partition with its own file system. In other words,
data can only be shared at a very coarse granularity, which would
inhibit normal user experience in the private cloud. For example,
if every application hosted on a cloud runs in a separate VM, a
user will have to take roundabout ways to do trivial tasks such
as downloading a PDF file in a browser and then opening it in a
separate application.

To overcome present inter-VM sharing limitations, one can use
a network-based file system (e.g., NFS). A dedicated NFS server can
run as a separate VM, and each application VMwould need tomount
the NFS access point. Unfortunately, NFS introduces unnecessary
performance overheads (e.g., using the network layer even though
all VMs are still running locally on the same host) and complicates
the setup. Moreover, the NFS-based file sharing mechanism will still
not appear as “native” to the user as NFS does not support various
extensions available to local file systems (e.g, extended attributes).
NFS also has usability issues: it will appear as a “remote” rather
than “local” file system. Reliability and recoverability in this setup
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is also somewhat limited, as the NFS server will run atop a virtual
storage device, for which Xen implements no recoverability.

In this sense, we ask a question: Can we build a new mechanism
for storage and file system sharing which enables much more trans-
parent integration into different VMs? Moreover, can we build the
mechanism which recovers from failures (e.g., an application can
be restarted and reconnected to the file system server)?

Another concern is to make inter-VM communication (IVMC)
scalable to avoid bottlenecks in multi-core systems. As we show in
Section 5, typical approaches used in present hypervisors do not
scale well as the number of cores increases. This task is very chal-
lenging since, for correctness, we also need to ensure linearizabil-
ity [26] of concurrent requests, which inherently limits parallelism.

We present a storage server, which is responsible for low-level
block I/O, and a file system server, which is responsible for higher-
level file I/O, in a private cloud. They address issues of isolation,
performance, and failure recovery. The storage server supports a
wide range of legacy andmodern storage devices (e.g., NVMe, which
is also used by public clouds such as Amazon EC2). The storage
server can be transparently substituted with hardware virtualiza-
tion techniques such as SR-IOV that enable more direct access to
hardware (or multiple virtual devices in Amazon EC2). For the
virtualization of system component states and our IVMC design,
discussed below, we add an abstraction layer between a system
server and applications.

In our design, the storage server can be restarted. Applications
can thus recover from faults occurring in the storage server. Recov-
ering storage devices requires the entire state (prior to the fault)
to be recovered. The challenge here is to make this process with-
out incurring significant overheads, e.g., avoiding duplication of
requests or additional IVMCs, a known problem with past systems
with server recovery [23].

For the transparent failure recovery, we suggest techniques such
as state virtualization and flying data recovery. For the state vir-
tualization, we separate storage states into two classes: one that
is invariant and the other one that can be restored afterwards. In-
variant states such as the device node that clients mount (or open)
are virtualized and preserved after failure recovery. Other states
such as the IVMC channel with pending I/O requests (in the shared
client-server memory) are recovered through a special procedure.

Our IVMC design is very scalable due to its use of state-of-the-art
multiple-producer multiple-consumer lock-free ring buffers [51].
By adopting these recent advances in the concurrent data structure
design, we achieve better scalability compared to existing methods,
e.g., I/O ring buffers used in the Xen hypervisor. We present a
method for reconstructing IVMC and ring buffers during failures
without sacrificing performance and scalability.

The contributions of this paper include: (1) Two servers: a stor-
age server (for low-level block I/O) and a file system server for
applications (for high-level file I/O) running in separate isolated
VMs. Applications typically talk to the file system server; the file
system server, in turn, talks to the storage server. (2) A transpar-
ent failure recovery mechanism for the storage server with state
virtualization and flying data recovery techniques. (3) A special
inter-VM communication (IVMC) mechanism that is scalable and
recoverable in the event of failures.

Our evaluation in Section 5 shows that our servers allow to attain
performance that is on par with Linux.

2 Background
2.1 Private Cloud
Private cloud computing represents a distinct and influential model
within the broader cloud computing spectrum. It is characterized
by a dedicated cloud infrastructure that is used exclusively by a
single organization or entity. In contrast to public clouds, private
clouds offer heightened control, customization, and security, mak-
ing them a preferred choice [6] for organizations with stringent
data privacy, compliance, and security requirements. This exclusive
control enables organizations to configure the cloud environment
to meet their specific needs, ensuring that data and applications
are housed in a more controlled and sometimes on-premises set-
ting. Private clouds are further categorized into on-premises private
clouds, where the cloud infrastructure is hosted within the organi-
zation’s data centers, and hosted private clouds, which are provided
by a third-party service provider. The utilization of private clouds
has gained prominence in sectors such as finance, healthcare, and
government, where sensitive and confidential data handling is para-
mount. This paper seeks to delve deeper into the nuances of private
cloud computing, especially as it relates to file system and storage
organization.

2.2 Unikernels
Cloud providers deploy customer VMs with fully functioning OSs,
such as Linux, even though most customers only run a single ap-
plication within the VMs [43]. Such OSs have numerous device
drivers and features. Most of them are not used by the customers
but can potentially lead to a large attack surface, poor performance,
or long boot times [42].

Unikernels [43] can be viewed as a specialized form of library
OSs. A unikernel instance includes a single application that is stati-
cally compiled together with the necessary kernel components and
executes in a single address space. Since traditional system calls
are replaced with regular function calls [13, 55], mode switch over-
heads [62] are avoided, thereby improving performance. Unikernels
also typically optimize various OS layers to avoid unnecessary over-
heads. Since each unikernel instance houses one application, the
resulting code base and the attack surface are significantly smaller
than that of monolithic OSs. Unikernels are usually executed in a
virtualized environment, atop a hypervisor, which provides strong
isolation – usually via hardware virtualization – between different
unikernel instances, further improving security. Given these ben-
efits, they have recently gained traction in a number of domains
including cloud/edge computing [10, 33, 34, 44, 61], server appli-
cations [34, 42, 43, 61, 73], NFV [14, 43–45], IoT [14, 18], HPC [36],
VM introspection and malware analysis [72], and regular desktop
applications [56, 70].

Linux-based Unikernels. UKL [57] and Lupine [35] implement
unikernel-like systems2 from Linux, but they are experimental,
not officially maintained by the Linux community, and currently

2Lupine is not a unikernel in a strict sense but is partially inspired by unikernels;
Lupine’s authors called it “a Linux in unikernel clothing.”
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lack flexibility offered by other unikernels. Moreover, as discussed
in [54], wide adoption of Linux-based unikernels in general is prob-
lematic due to licensing issues which will only manifest when using
the unikernel model.

Rumprun. NetBSD’s device drivers can be factored out from its
monolithic kernel by using “rump kernels,” which are officially
maintained by the NetBSD community [29]. Rumprun [7] takes
one step further to create a unikernel from rump kernels by using
additional layers and running everything on top of the Xen hyper-
visor, KVM, or a bare-metal machine. LibrettOS [54] has previously
demonstrated how a simple network server can be created from
rumprun.

We opted to continue moving in this direction by building a more
advanced storage server. Since most NetBSD’s device drivers can
be reused, we reuse most legacy and state-of-the-art (e.g., NVMe)
drivers directly from NetBSD.

Hardware isolation is another advantage that comes with the
rumprun unikernel. Similar to LibrettOS, we use the Xen hypervisor
and its hardware-assisted virtualization mode (HVM) to isolate
different instances of clients and servers.

2.3 Xen Hypervisor
Xen is a type-1 hypervisor that was first introduced and developed
by the Computer Laboratory at the University of Cambridge. HVM
guests are widely supported by Xen. HVM uses CPU virtualization
(e.g., Intel VT or AMD-V) [71]. Unlike KVM [31], Xen’s hypervisor
itself is not using any general-purpose OS (e.g., Linux) and is rela-
tively small, which makes it a strong candidate for private clouds,
where security and small trusting computing base are crucial.

There are two mechanisms to control interactions between Xen
and guest VMs (also known as domains in Xen). The first one is
through hypercalls, which are synchronous calls from the domains
to Xen. The second one is through event channels, which are asyn-
chronous notifications delivered from the domains to Xen [9].

A hypercall is a software trap from guest domains into the hy-
pervisor to perform a privileged operation, similar to system calls
in a conventional OS. The event channel is a signaling mechanism
that is used in a path from the Xen hypervisor to guest domains.
Events can also be sent from one domain to another through virtual
interrupts (VIRQs).

Grant tables provide a generic mechanism for memory shar-
ing between domains. Each domain has its own grant table that is
shared with Xen. Domains can notify Xen what permissions other
domains have on their pages through the grant table. Grant refer-
ences are integers and are used by the domains to map the pages
of the granting domains. Shared pages via grant tables are used by
the back-end/front-end drivers for block and network I/O in Xen.

2.4 VirtIO and Xen I/O Drivers
Xen’s back-/front-end drivers and (similar) KVM’s [31] virtio drivers
are well-known and widely used. The key problem with these
drivers is that they work at coarse (disk, partition, etc.) granularity,
making it impossible to share individual files. Their recoverability
and scalability are also very limited. More specifically, if the storage
back-end driver fails, a corresponding guest OS will be unable to
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Figure 1: Architecture of storage server.

recover, especially if the virtual storage device was used for critical
guest OS files or mounted as a root partition.

2.5 Scalable Circular Queue
Scalable Circular Queue (SCQ) is a lock-free multiple-producer and
multiple-consumer FIFO ring buffer which is fairly scalable [51].
SCQ consists of two circular queues (fq and aq), and one array
(data buffer). fq (free queue) maintains indices of unallocated entries
of the array. aq (allocate queue) maintains allocated indices to be
consumed. A producer dequeues an index from fq and writes data
on the corresponding array entry. Then, it enqueues the index into
aq. A consumer dequeues the index from aq and reads data from
the array. Lastly, it releases the index by inserting it into fq.

SCQ’s advantage is that it uses specialized hardware instruc-
tions such as fetch-and-add3 which scale much better as the con-
tention grows than more traditional compare-and-swap implemen-
tations [48, 51] while still being fully linearizable unlike other fetch-
and-add ring buffers that often incorrectly [39] claim that they are
“lock-free.”

Although SCQ is not a direct contribution, its integration with
real-life systems (including non-trivial recovery paths) and mac-
robenchmark evaluation have not yet been done.

3 Design
We design servers and applications built upon unikernels, which
benefits our design in multiple ways. For example, a unikernel’s
small image size allows for fast booting, enabling the storage server
to restart in a few seconds to recover from faults. Additionally,
its small image size exposes a limited attack surface compared to
full-fledged OSs. Finally, unikernels are VMs that are specialized for
a single application. Therefore, we are able to provide servers and
applications with strong isolation, which comes from virtualization.

We do not violate main isolation principles: we use separate
ring buffers for each application, the file system server only shares
specific memory regions, etc. Although the recovery is dependent
on the client, it only affects client-related pieces.

3While not all present architectures implement fetch-and-add directly, x86-64 and the
most recent versions of ARM64 do, making this instruction widely available.
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3.1 Client-Server Driver Design
We use a split-driver model. A client driver is linked as a library in
the application’s address space so that the application can directly
use it. On the server side, a server driver is linked as a library
along with other device drivers such as the NVMe driver. The client
and server drivers communicate with each other through IVMC
that consists of ring buffers. Applications issue block I/O requests
through the client driver. Through this IVMC channel, I/O requests
are transferred to the server driver. The server driver issues the I/O
requests to the actual storage (e.g., NVMe) device driver. As shown
in Figure 1, the device driver exclusively accesses the hardware
resources due to Xen’s PCI passthrough feature.

An application interacts with the client driver through a virtual
block device node that the client creates. Data blocks that the ap-
plication requests are packed in block I/O buffers and transferred
to the client driver by the file system which is on the upper layer.
The client driver forwards the buffers to the server driver through
the IVMC. The IVMC consists of ring buffers and virtual interrupts.
The ring buffers are constructed and initialized by the client driver
in its shared memory. The server driver maps the memory to its
address space. With this design, the data in the ring buffers are safe
even if the server crashes and restarts.

3.2 Inter-VM Communication (IVMC)
The IVMC channel between the server and client drivers consists
of ring buffers and virtual interrupts.

Ring Buffers. The ring buffers are a key component of our IVMC
design. We design a multiple-producer and multiple-consumer
ring buffer by leveraging a lock-free ring buffer implementation
from [51]. There are two data buffers, two free rings and four allo-
cate rings in the IVMC design. A small data buffer is used to contain
small data such as write responses and read requests. A large data
buffer, on the other hand, is used for large data such as write re-
quests and read responses. Each of the free rings maintains the
available indices of the small and large data buffers, respectively
(i.e., available data slots in the small data buffer are indexed by
indices in the small free buffer, and vice versa for the large data
buffer). Ring buffers are located in the client driver’s memory that
is shared with the server driver.

A sender dequeues an index of an unallocated slot of the data
buffer and writes data into the slot. For example, when the client
driver issues a write request, it dequeues an index from large free
ring (Figure 2). Using this index, the client driver copies data into
the large data buffer slot. Finally, the index is enqueued into write
request allocate ring. The server driver retrieves the index from the
write request allocate ring and reads the data of the write request
from the large data buffer using the index. It issues a block I/O to
the storage device driver and releases the index of the data buffer
by putting it back to the large free ring.

Once the storage responds to the I/O request, the server driver
also forwards it to the client driver. As the response of the write
operation has small data such as return value and error number,
the server driver uses the small data buffer. Therefore, it dequeues a
free index of the small data buffer from small free ring. The response
is copied into the empty data slot and the server driver enqueues
the index to write response allocate ring. Finally, the client receives

SenderReceiver

1. idx = deq()

2. data_buffer[idx]

free
ring

data buffer

allocate
   ring

3. enq(idx)

4. idx = deq

5. data_buffer[idx]

6. enq(idx)

Figure 2: Ring buffer: (1) A producer dequeues an index from
the free queue and (2) writes data to the corresponding data
buffer entry. Then, (3) inserts the index into the allocate
queue. (4) A consumer dequeues the index from the allocate
queue and (5) accesses data from the data buffer. Lastly, (6) it
releases the index by enqueueing back into the free queue.

the response with the index dequeued from the allocate ring and
releases the slot by putting the index back to the small free ring.

For a read request, the client driver uses the small data buffer
instead of the large data buffer. Likewise, the large data buffer is
used to transfer a read response because it brings data read from
the storage.

Atomic Variables and Virtual Interrupt. When there is no entry to
be consumed from the ring buffer, the receiver (consumer) thread
goes to sleep to save CPU cycles. In this design, the sender needs to
know the status of the receiver for the case when the sender needs to
wake up the receiver. We introduce status variables to synchronize
the sender with the receiver. Each ring buffer has an atomic variable
that represents the status of the receiver. By reading this atomic
variable, the sender does not send unnecessary interrupts to the
other side if the receiver is active. Otherwise, it sends an interrupt
to wake up the other end when the atomic variable represents that
the receiver is sleeping.

The interrupt mechanism is another key component for efficient
IVMC. We design virtual interrupts between the server and client
drivers in multiple places. The main usage of the virtual interrupts
is for the sender to notify the receiver to consume entries in a
ring buffer. Besides that the sender notifies the receiver, a virtual
interrupt is received by the sender. When there is no available index
(i.e., the free ring is empty), the sender goes to sleep and waits for
some index to be released by the receiver. The receiver sends a
virtual interrupt to the sleeping sender when it enqueues an index
into the free ring so that the sender can use that index.

3.3 Failure Recovery
The storage server can recover from faults such as memory access
violations, deadlocks, and interrupt handling procedure failures.
Faults occurring in the storage stack are isolated to the storage
server and do not affect the rest of the system.With strong isolation,
the storage server can restart to recover from faults. However,
challenges come from state recovery. Storage and connection states
have to be consistent before and after the storage server restarts,
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Figure 3: Failure recovery: the client driver virtualizes storage states by creating a virtual storage and device node, allowing the
application to mount and open them. Since these states reside within the application’s address space, they are preserved across
failures. When the storage server fails and restarts, the shared memory and virtual interrupts are rebuilt using the states stored
in the hypervisor’s memory. Once the new storage server and IVMC are ready, the client driver resends block I/O requests.
Each request in the data buffer is associated with a flag, enabling the client driver to identify and resend only those requests
for which responses were not received.

and flying requests (i.e., requests are sent, but responses are not
yet received) must not be lost to make the recovery transparent to
applications.

To address these challenges, we separate the relevant states into
two categories: (1) states that must remain invariant, and (2) states
that can be reinitialized. We keep the invariant states in the client
driver and assume that the application domain does not fail. The
client driver virtualizes the states, for example, by creating a virtual
device node that the application interfaces and communicates with.
The virtual device node is preserved during failure recovery of the
storage server and abstracts all block I/O transfers through the
IVMC channel.

On the server side, the driver maintains the actual states of the
storage stack and reinitializes them upon restart. Since the virtual
states (e.g., virtual device node) maintained by the client are needed
only by the application and are preserved during failure recovery,
the storage server can restart and recover from faults transparently.
Our storage server design makes it feasible to separate, virtualize,
and safely keep part of the states in the client driver.

During failure recovery, the storage server must rebuild the
IVMC with the applications after restarting. As shown in Figure 3,
minimal state information is preserved in the hypervisor memory,
enabling the restarted storage server to rebuild the IVMC channel
following a crash.

Recovery of flying requests is also required for transparent failure
recovery. In our design, the ring buffers are allocated in the client
driver’s memory and shared with the server driver. As a result,
the data in the buffer is preserved even when the storage server
restarts.

However, the client driver is unaware of which I/O requests are
processed by the server driver when the storage server crashes
and restarts unless responses for the corresponding requests are
received from the server driver. To recover from failures of the
storage server, the client driver preserves slots of the data buffers
until receiving the corresponding responses from the server driver.
Also, the client driver maintains flags in the data buffer and they
are used to mark whether the response for the request is received.

buf
buf

offset
offset

base address
shared memory

ApplicationFS Server

map

map

Figure 4: File system server directly accesses file I/O data
buffer with base address and offset.

This array of flags is used as a reference when the client driver
resends I/O requests to the restarted server driver. In a conservative
way, the client driver resends I/O requests whose responses are
not received from the server driver even though the requests are
processed by the storage device.

3.4 File System Server and Copy-Free IVMC
Our file system (FS) server with the lock-free IVMC is designed to
be memory copy-free. Instead of copying the file I/O data buffer to
the IVMC layer, an application sends a pointer to the buffer directly
to the FS server. For the FS server to directly access the buffer, the
application shares its memory area of file I/O data buffers with the
FS server. The FS server maps the shared memory in its address
space and stores its base address. Since memory addresses from
the application differ in the FS server’s address space, the server
calculates the correct memory locations using the base address and
the buffer offsets (Figure 4).

File descriptors (FD) are important for doing file I/O. As an FD
table is created and managed by each process, we create an FD map-
ping table in the client driver. The table maintains the FS server’s
FD and application’s FD mappings. When an application allocates
a new FD to open a file, it registers this FD in the client driver’s FD
table. On the other hand, when an application creates new FDs for
sockets or devices (e.g., stdout), the client driver marks these FDs
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Figure 5: This diagram illustrates how two application VMs
achieve isolation and data sharing with two service servers.
Application VM 0, which requires file system semantics (FS-
level access), communicates with the central FS server VM
via IVMC. The FS server manages metadata, locking, and
synchronization for shared files, and communicates with the
storage server VM when block I/Os are issued. Meanwhile,
Application VM 1, which requires raw block-device access
(e.g., for a database), bypasses the FS server and communi-
cates directly with the storage server VM over a separate
IVMC channel.

accordingly. File operations on such FDs are handled locally by the
application, rather than being forwarded to the FS server.

3.5 System Architecture Overview
Figure 5 illustrates the architecture of the proposed system, where
applications interact with the file system server through an IVMC
channel. The file system server, running as an isolated unikernel
domain, not only communicates with the applications but also for-
wards high-level file I/O requests to the storage server through
another IVMC channel. The storage server, also executed as a sepa-
rate unikernel instance, performs low-level block I/O operations
by directly accessing the NVMe device via PCI passthrough. All
domains are managed by the Xen hypervisor, which enforces strong
isolation while allowing controlled shared memory channels for
IVMC. Hardware components such as the NVMe storage and net-
work interface are exclusively attached to the respective service
domains, enabling direct device access without involving the appli-
cation VM. The bidirectional IVMC channels enable low-latency,
lock-free communication between the application, the file system
server, and the storage server.

4 Implementation
Our storage server and applications are built from the multi-core
HVM version of rumprun [54] running on top of Xen. Using hard-
ware (VM) virtualization, the storage server and applications remain
strongly isolated. The rumprun unikernel that we use for our pro-
totype is based on NetBSD 9.0’s kernel code. As our storage server
is implemented using rumprun, it leverages NetBSD’s code and a
wide range of device drivers (e.g., NVMe). Also, since our prototype
runs on top of Xen, it uses Xen’s hypercalls, grant table, and event
channels for initialization, memory sharing, and virtual interrupts.

We modify the Xen (v4.14) hypervisor by introducing a new
hypercall for server and client initialization. Our new hypercall
consists of two operations: (1) registration of the server and client
drivers; (2) fetching the information of each driver. The registration
operation simply stores the driver information (e.g., domain ID,
port numbers, and grant references) in Xen’s memory. On the other
hand, the fetching operation copies this information from Xen’s
memory to each driver’s memory. Once the server and client drivers
are connected through their communication channel (i.e., IVMC),
our custom hypercall is no longer used.

4.1 Client Driver
The client driver bridges applications with the storage server. It is
a library which is linked to the application address space. Client
driver memory pages are shared with the server driver through
the Xen grant table, and ring buffers are created within the shared
pages. Also, the atomic variables for synchronization are attached
to the ring buffers.

After the application domain is launched, the client driver queries
the server driver information via a hypercall. It then allocates mem-
ory and creates six rings, along with two data buffers, in the con-
tiguous page range. Several pages are additionally allocated to pass
the grant references of the shared pages to the server driver. The
grant references of these pages are stored in Xen’s memory through
the hypercall. Later, these pages are mapped by the server driver,
allowing it to obtain the grant references for the shared pages.

After the ring buffers and the atomic variables are initialized, the
client driver allocates the event channel ports and registers them
via a hypercall. Finally, a VIRQ is sent to a doorbell port (we call it
welcome port) of the server driver.

The virtual block device node is an interface through which
applications interact with the client driver. We implement driver
code that creates a virtual block device node in the /dev directory.
Also, the driver code defines function wrappers such as open, read,
write, and ioctl. File operations called by the application are routed
to the functions in the driver code.

Block I/O data is transferred via our ring buffers. When the
application requests a block I/O, a pointer of the I/O buffer is passed
to the client driver. The client driver extracts the data, size of data,
and block number. Then it copies the data, size, block number, and
pointer of the block I/O buffer to the ring buffer. It has to track the
pointer of the block I/O buffer in order to close the I/O request with
biodone. Finally, it sends VIRQ to the server driver if it is asleep.

Consumer threads that dequeue entries from the rings go to sleep
when the rings are empty. They first set the atomic variable to a
negative value. As the atomic variables are shared, the server driver
knows whether the threads are asleep. Later, they are awakened
by the VIRQs from the server driver. If the rings are not empty and
the threads are working on the rings, the atomic value is set to 1 so
that the server driver does not send the VIRQs.

The client driver calls biodone which is a NetBSD kernel API
to close the block I/O request. The response from the server driver
contains a pointer of the block I/O buffer, the size of data writ-
ten/read, and the error code. The client driver calculates the size of
the remaining data to be processed and stores it in the block I/O
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Processor 2 x Intel Xeon Silver 4114, 2.20 GHz
Number of cores 10 per processor, per NUMA node
HyperThreading OFF (2 per core)
TurboBoost OFF
L1/L2 cache 64 KB / 1024 KB per core
L3 cache 14080 KB
Main Memory 96 GB
Network Intel x520-2 10GbE (82599ES)
Storage Samsung 970 EVO Plus 500 GB NVMe

Table 1: Experimental setup.

buffer. Eventually, the client calls biodonewith the block I/O buffer
containing all the metadata. At this point, the block I/O ends.

4.2 Server Driver
The server driver resides in the storage server domain. Its role
is to receive I/O requests from the client, perform I/O, and send
responses back. As the storage server domain contains the device
driver, the server driver can directly send the requests to the device
drivers. Similar to the client driver, the server driver is built as a
library in the storage server domain.

The server driver is initialized before an application is launched.
It first allocates the welcome port and registers its domain ID and
the welcome port number through a hypercall. After the client
driver finishes its initialization, it sends a VIRQ to the welcome
port and invokes the server driver to begin building the IVMC. The
grant references for the shared pages and event channel ports are
stored in Xen’s memory. The server driver maps the shared pages
and establishes the event channels. Also, a receiver thread is created
when the server driver connects with the client. The thread sleeps
when the rings are empty but wakes up upon receiving a VIRQ
from the client driver.

The server driver creates an empty block I/O buffer using the
NetBSD kernel API. It then populates the metadata, including the
size of the data, block number, device number of the block device, a
function pointer to the callback function, and a dedicated variable
for private use. We use the variable to store an address of the block
I/O buffer in the client to track the I/O requested by the application.
Also, flags are marked as busy to indicate that the buffer is in use,
along with the type of operation (e.g., write or read). Finally, the
server driver can issue block I/O requests to the device driver with
the block I/O buffer filled with the metadata and data.

4.3 Inter-VM Communication
Ring buffers use shared pages. To share pages between domains,
the memory owner (client driver) grants access to the other end,
which then maps the pages. The client driver initializes the grant
table in its early stage. Then, it sends the grant references to the
server driver. The server driver maps the pages by calling the cor-
responding hypercall. The client driver preallocates a big chunk of
shared memory during its initialization. Unlike existing blkfront
drivers, this design allows to avoid hypercalls for every single I/O
request.

The size of the data block and the total number of entries in the
rings significantly affect the performance of the ring buffers. We
are able to set up 8192 entries (we set 1024 entries in the current
implementation) for each ring, and any number beyond that is not
allowed due to limited memory. Also, we set the data block size
to 64 KB which is equivalent to the maximum block size that the
NetBSD kernel can use.

We use the Xen event channel to implement virtual interrupts
between the drivers. Hypercalls allocate an event channel and port
number. Once Xen allocates the port number, the other end must
know the number in order to bind. For this purpose, hypercalls are
called with the corresponding port number.

Sending a virtual interrupt inevitably triggers a hypercall. That
is, excessive virtual interrupts in the IVMC cause significant perfor-
mance degradation. To avoid unnecessary interrupts, the drivers
maintain atomic variables to synchronize each status. The atomic
variables are attached to the ring buffers. With the atomic variables,
the sender can know the receiver’s status such that it does not send
a virtual interrupt if the receiver is consuming the ring buffer.

5 Evaluation
We evaluate our storage server and file system server using a suite of
micro- and macrobenchmarks, and compare them against rumprun
and Linux (Ubuntu 22.04 with Linux 5.15). We chose these two
as relevant baselines because the storage server is built on the
rumprun unikernel, and Linux is a popular server OS. For a fair
comparison, we considered multiserver OSs. However, to the best of
our knowledge, none of the multiserver OSs, such as MINIX 3 [23],
support NVMe devices. In our evaluation, most benchmarks focus
on a single client-VM at a time. This approach is chosen intention-
ally to isolate the performance of a given application and precisely
measure the overheads introduced by our IVMC mechanism under
various loads and I/O sizes.

Table 1 presents our experimental setup. The host machine is
running Xen 4.14.0 and Ubuntu 20.04 with Linux 5.4.0 as Xen’s
Dom0, which is used for system initialization and management.
The rumprun unikernels used in our experiment are the versions
maintained in the repository [63] and come with NetBSD 9.0 code.
We set the I/O block size to 64 KB for the best performance. In addi-
tion to our storage server, we evaluate ordinary rumprun instances
that enable direct access to storage devices. This baseline can be use-
ful when comparing multiserver vs. library OS modes (for selected
applications with dedicated NVMe partitions). We used Samsung
970 Evo Plus 500 GB NVMe device and Intel x520-2 10GbE NIC
for storage and network devices, respectively. They are exclusively
granted to virtual machines through the PCI passthrough feature.

5.1 Storage Server
5.1.1 Microbenchmark. We implemented our own test that repeat-
edly performs sequential reads and writes, rather than using fio [8],
because fio has not yet been ported to rumprun, and its build sys-
tem relies on Linux-specific system interfaces that are unavailable
in our unikernel environment. Our test opens the virtual block
device (/dev/myblk) as a single file. We varied the data size from
64 KB to 4MB andmeasured the elapsed time to read/write a total of
56 GB of data to the NVMe storage. We assumed that 56 GB would
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Figure 6: Storage server microbenchmark.
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Figure 7: Storage server macrobenchmarks.

be enough to avoid the buffer cache, since each VM has 4 GB of
memory. We ran 10 iterations of the benchmark and calculated the
average throughput for the read and write operations. The results
are shown in Figure 6.

For reads, both Linux and rumprun outperform the storage
server. This is because the storage server introduces the IVMC
data-copying overhead, which neither Linux nor rumprun have.4
Rumprun is slower than Linux due to differences in I/O stacks
(rumprun uses NetBSD code). On the other hand, the write through-
puts are saturated at the same level. We attribute it to the overhead
imposed by the NVMe controller’s internal mechanism (e.g., wear
leveling, garbage collecting).
4Unlike the file system server, the storage server has copying overheads. This is primar-
ily a deliberate design choice for security reasons, though future work could explore
further optimizations such as zero-copying where feasible without compromising
inter-VM security guarantees.

5.1.2 Macrobenchmarks. To evaluate real applications, we used
Filebench [68]. Since extensive system dependencies prevented
building Filebench as a rumprun unikernel, we used an alternative
approach: running an NFS server (v3) inside a virtual machine to
act as the server for all three configurations (our storage server,
rumprun, and Linux). On the server machine, an NVMe partition
was formatted with the ext3 file system5 and exported via NFS. On
a separate client machine, the NFS share was mounted to run the
Filebench workload. The client and server were connected together
using 10GbE NICs (Intel x520-2), with the network configured for
optimal performance (MTU of 9000 [37]). This setup allowed us
to execute the fileserver, varmail, and webserver workloads, each
involving 20,000 files of 1 MB (20 GB in total).

To isolate the impact of our IVMC-based storage server design
from the underlying file system and device stack, we evaluated three
server-side configurations: (A) a Linux-based NFS server where I/O
requests traverse the Linux kernel block I/O stack and directly reach
the NVMe device via PCI passthrough, (B) a rumprun-based NFS
server where I/O follows the NetBSD block I/O path inside rumprun
and also directly reaches the NVMe device via PCI passthrough, and
(C) our design, where the NFS server runs inside a regular applica-
tion VM that does not own the NVMe device. In configuration C, the
NFS server issues requests through its client driver, which forwards
them over our IVMC channel to the storage server VM. The storage
server then processes the requests using the same NetBSD block
I/O stack as rumprun and finally accesses the NVMe device via PCI
passthrough. In all setups, the NFS server asynchronously issues
requests to ext3, which then dispatches asynchronous operations to
the block device. Therefore, the only difference between the three
configurations lies in how the block requests are transported to the
NVMe device – either directly via passthrough (Linux or rumprun)
or through IVMC and our storage server. We explicitly include
rumprun in the comparison because both rumprun and our storage
server rely on the NetBSD block I/O implementation, allowing a fair
evaluation of whether our IVMC-based design can match or exceed
the performance of direct passthrough while enabling isolation and
transparent recovery.

Fileserver. Fileserver has 50 threads that perform a sequence
of creates, deletes, appends, write-whole-file, and read-whole-file.
We chose fileserver because it intensively writes compared to other
workloads. From the results in Figure 7, our storage server outper-
forms rumprun and Linux for all I/O sizes. With the storage server,
the application can asynchronously batch write requests by insert-
ing a bunch of requests into the ring buffers without waiting for
the responses. The storage server provides some sort of parallelism,
thus avoiding internal scheduling overhead. The storage server
architecture parallelizes the I/O process: the application continues
sending requests while the storage server simultaneously performs
I/O operations on the NVMe device.

Varmail. Varmail emulates a multi-threaded mail server that
represents the workload of the /var/mail directory on traditional
UNIX systems [68]. Our storage server and rumprun outperform
Linux due to Varmail’s frequent system calls, which are known to
cause non-negligible performance overheads [62]. The rumprun
unikernel avoids the system call layer altogether. In addition, the

5We selected ext3 because NetBSD/rumprun does not support ext4.
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Figure 8: Failure recovery evaluation.
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Figure 9: File system server microbenchmark.

storage server outperforms rumprun by leveraging the storage I/O
parallelism.

Webserver. Webserver is a multi-threaded read-intensive work-
load. As a result, this workload is highly affected by the latency
of the read operation. We observe similar results overall. Among
the three, Linux has a smaller latency (Figure 7), which is visible
for smaller data sizes. As the data sizes increase, the difference
completely disappears due to the saturation of the NFS network
throughput.

5.2 Storage Server Failure Recovery
We evaluated the failure recovery capability of our storage server.
Our model assumes that faults occurring in the storage server such
as memory access violations, deadlocks, and interrupt handling
procedure failures, can be recovered by restarting the server. Since
the storage server is strongly isolated by hardware virtualization,
failures are contained within the server and do not propagate else-
where. An application can fail, but we rely on the fault-recovery
features of the file system (e.g., journaling) that reside on the client
side. We designed an experiment to demonstrate the failure recov-
ery of our storage server. We assumed a case where there are two
applications: we implemented a simple program that performs a
storage I/O task; the other application is the Nginx HTTP server.
The program performing storage I/O uses the storage server, while
the Nginx HTTP server uses NIC hardware for networking. To
avoid the effects of the page cache, the storage I/O program reads
and writes distinct storage blocks.
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Figure 10: PostMark benchmark.

When the storage server fails, the program’s file system data
transfer is stopped, and we report an outage that is observed by
the client. Figure 8 shows the corresponding file system and net-
work transfer speed. At the 7-second mark, the storage server fails,
causing the file system transfer speed to drop to zero. After the
storage server restarts at the 20-second mark, the transfer speed is
restored. During the failure, the network transfer speed of Nginx is
not affected.

5.3 File System Server
5.3.1 Microbenchmark. We evaluated the file system server, rump-
run, and Linux using a microbenchmark that reads and writes vari-
ous data sizes on a ramdisk. The microbenchmark read and wrote
a total of 14 GB of data, measuring the elapsed time to calculate
average throughput. We measured 10 iterations. As Figure 9 shows,
Linux outperforms both the file system server and rumprun, thanks
to its optimized I/O stack compared to NetBSD. The file system
server is slightly slower than rumprun due to IVMC overheads such
as interrupt handling and scheduling overhead. However, the file
system server outperforms rumprun with larger data sizes, as IVMC
overheads become negligible and the file system server enhances
parallelism by detaching the file I/O stack from the application.

5.3.2 Macrobenchmarks. We measured performance of real-life
applications. For Nginx, we used a client machine (see Section 5.1.2)
connected via 10GbE.

PostMark. We ran PostMark [30] to demonstrate the file system
server performance. It creates, reads, appends, and deletes a pool
of random text files with varying sizes [1]. We configured it to
perform 2,000 transactions on 100 files in tmpfs, with block sizes
varying from 64 KB to 4 MB. The file system server and rumprun
outperform Linux since PostMark triggers numerous system calls.
In particular, the performance of delete demonstrates that the
system call latency of the file system server and rumprun is much
smaller than that of Linux because sys_unlink only deletes a name
from the file system [2], thereby representing a system call latency.
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Figure 11: Nginx HTTP Server.

However, the throughput of the file system server and rumprun
does not always scale with increasing block size. This is partially
attributed to rumprun’s internal locking mechanism within its
NetBSD glue layer, which can limit the degree of parallelism for
I/O-intensive requests.

Nginx HTTP Server. We chose a popular Nginx server (v1.8.0) [50]
because its workload combines file I/O and networking. We con-
figured Apache Benchmark [69] to send 10,000 requests and ran
it with various number of concurrent requests on the client ma-
chine. Figure 11 shows throughputs of different file sizes that the
client downloads from the web server. Linux outperforms the file
system server and rumprun in most experiments. This is due to the
highly optimized I/O stack (e.g., zero-copy implementation) and
NIC device driver in Linux. With the file size of 64 KB and 256 KB,
the IVMC overhead contributes to the throughput gap, shown in
Figure 11. With large file sizes (1 MB and 4 MB) and high level of
concurrency, the gap narrows down as the IVMC overhead becomes
negligible when processing large data.

5.4 IVMC Evaluation
In Figure 12, we evaluate our IVMC that uses state-of-the-art SCQ
algorithm [51], LibrettOS’s method with a simpler lock-free ring
buffer [54], and IVMC through traditional I/O ring buffers such as
those found in the Xen hypervisor. Each experiment has 10,000,000
operations repeated 10 times, and we calculate throughput using
the mean elapsed time. SCQ’s advantage is that it uses specialized
hardware instructions, such as fetch-and-add, which scale better.
Although more traditional I/O ring buffers such as those found in
Xen have independent enqueuers and dequeuers, those still need
to be synchronized across multiple threads on each side. Though
one-thread case is optimized, there are still overheads which make
it slower than SCQ even for one thread.

We present IVMC results for null-calls to measure the maximum
number of requests per second. Our IVMC scales very well as the
number of threads increases. With more than 10 threads, over-
socket contention due to NUMA (non-uniform memory access)
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Figure 12: Null-call IVMCs: Our SCQ-based method, Libret-
tOS’s original method, and IVMC with traditional (e.g., Xen)
ring buffers. In the pairwise experiment, enqueues and de-
queues are in a tight loop. In the random experiment, en-
queues (50%) and dequeues (50%) are in random order.

slows down the throughput but it still remains much higher than in
other approaches. The gap increases from 2x to 6x as the number
of threads grows.

6 Related Work
To improve OS reliability, a fundamental design principle studied in
the OS literature is isolation, and numerous researchers have pro-
posed methods to provide isolation in systems. Microkernels such
as [3, 16, 21, 23, 27, 28, 40] provide isolation of system software
components in separate address spaces. In particular, microker-
nels [20, 24, 32] enhance security and reliability by placing only
essential system components within the kernel. L4 [40] is a family
of microkernels, and members of this family are used for various
purposes. In particular, seL4 [32] is known as a formally verified
microkernel. Multiserver OSs are a type of microkernel, where OS
components run in separate user processes called system servers
(e.g., network server, storage server, device driver server). Examples
of multiserver OSs include MINIX 3 [23], GNU Hurd [11], Mach-
US [64], and SawMill [19].

Failure Recovery of Stateful Servers. Iguana [38] is a suite of
OS services running on top of the L4 microkernel. While it lacks
advanced failure recovery support, stateless services can still be
restarted. However, failures in stateful services are more difficult
to recover from. L4Linux [22] implements Linux services as user-
mode servers, but its reliability is no better than that of the standard
monolithic Linux. Chorus OS [58] executes system services in the
privileged mode and they share the same address space with the mi-
crokernel. As a result, an error occurring in a server can potentially
corrupt server states stored in persistent memory. EROS [60] is a
capability-based OS that periodically takes snapshots of the entire
system state and saves them to disk. These snapshots are used for
recovery in case of failure. However, if the error that caused the fail-
ure is included in the snapshot, the system will crash again when
it is restored. Additionally, creating snapshots of large systems
introduces significant memory and performance overhead.
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CuriOS [15] stores client states on the client side, rather than on
servers. To prevent security problems where the client might mod-
ify its own state, the states are placed inmemory that is mapped into
the server’s address space, making it inaccessible to the client. This
isolates client states such that errors cannot propagate across all
clients. The authors also point out some intuitions for the transpar-
ent failure recovery in microkernels. Our storage server addresses
all the intuitions that the paper covers: (1) the storage server does
not affect the application at all as it is strongly isolated by virtualiza-
tion; (2) the client driver does not send requests during the server
restart; (3) client states are located on the client side. Furthermore,
our storage server has a performance benefit by eliminating ex-
pensive system call cost, whereas CuriOS introduces high context
switch overhead.

Herder et al. proposed fault-resilience mechanisms for MINIX
3 [25]. They locate a filter driver between the file system server
and the storage driver. The filter driver uses checksumming and
mirroring to detect storage failure and guarantee data integrity.
However, this design is not scalable and introduces high perfor-
mance overhead.

Researchers tried to employ certain aspects of the multiserver
design using existing monolithic OSs. For example, VirtuOS [53]
employs a fault-tolerant multiserver design by leveraging virtualiza-
tion to isolate the Linux kernel components. VirtuOS runs storage
and networking servers as service domains on top of Xen. However,
VirtuOS cannot recover storage states during failures. Snap [46]
presents a network server in Linux to improve performance and
simplify system upgrades. Snap uses its own protocol and is there-
fore incompatible with existing applications. Moreover, its recovery
mechanism is unsuitable for (stateful) storage.

Swift et al. introduced Nooks [67] to isolate device drivers from
the rest of the kernel with separated address spaces. Nooks’ succes-
sor [66] extended its failure detection capabilities and implemented
shadow drivers for transparent failure recovery. The shadow driver
implements only the services needed for recovery instead of repli-
cating the real driver. When a device driver fails, Nooks detects the
failure, and the shadow driver impersonates the failed driver by
handling requests until a new driver is restarted. Nooks restarts
the failed driver, restores states which are collected from the con-
figuration logs, and resubmits pending requests. However, shadow
drivers cannot ensure exactly-once behavior for driver requests
and depend upon higher-level protocols to maintain data integrity.

Fault-Tolerant File Systems. Chidambaram et al. introduced a
crash-consistent file system, OptFS [12]. They decouple ordering
and durability in the file system to reduce unnecessary flushing,
assuming that a crash does not occur, thereby improving perfor-
mance. However, since blocks may be re-ordered without flushes,
they introduce additional techniques, such as checksums and Asyn-
chronous Durability Notifications, to maintain consistency. With
these techniques, OptFS provides consistency while trading fresh-
ness for better performance. However, OptFS relies on journaling
file systems, such as Ext3, while our storage server ensures consis-
tency regardless of the file system implementation.

IceFS [41] physically disentangles a file system using an ab-
straction called a cube. With the disentanglement and isolation,
it introduces failure isolation, localized recovery, and specialized

journaling to achieve improved reliability and performance. Mem-
brane [65], on the other hand, provides an OS with restartable file
systems support.

Hybrid Microkernel-Exokernel OS. LibrettOS [54] introduced a fu-
sion of multiserver OS and library OS. A default mode of LibrettOS
is a multiserver OS that runs system services in an isolated manner.
LibrettOS introduced a network server as an example of system
servers and demonstrated its failure recovery. For selected appli-
cations requiring high performance, LibrettOS acts as a library OS
and grants the application exclusive access to hardware resources.
Furthermore, LibrettOS has the ability to dynamically switch be-
tween two modes: applications can switch between multiserver OS
and library OS mode during runtime with no interruption. This
hybrid design allows users to exploit respective strengths of each
model as well as simultaneously addresses issues of isolation, per-
formance, and recoverability. However, LibrettOS lacks a storage
server, which is one of the essential components in OSs. In addition,
LibrettOS’s network server is a stateless component and its failure
recovery relies on the TCP/IP reconnect process.

System Services for Unikernels. Kite [47] operates Xen driver
domains without the need for a full-fledged OS, making use of the
rumprun design. This approach yields several advantages, including
a reduction in system calls, smaller image sizes, and faster boot
times when compared to Linux-based driver domains. Notably,
Kite achieves these benefits without relying on heavyweight Linux
tools such as xen-tools. However, Kite’s biggest downside is coarse-
grained granularity of sharing, a problem that we address in this
paper by creating a file system server. Moreover, unlike Kite, our
design supports full failure recovery.

Shared-Memory Communication. The use of multiple-producer
multiple-consumer shared-memory mechanisms, similar to the
presented IVMC mechanisms in this paper, has been also advocated
in [17, 52, 54]. This paper specifically focuses on implementing
non-trivial recovery paths while using advanced non-blocking data
structures in the context of file systems and storage.

7 Conclusion
We presented two servers for a private cloud: a storage server (for
low-level block I/O) and a file system server (for high-level file I/O).
Both servers are complementing each other, e.g., the file system
server talks to the storage server, and the storage server talks to
the actual hardware. Our design uses modified rumprun unikernels,
where strong isolation is provided by hardware virtualization. Fur-
thermore, our servers leverage NetBSD code, i.e., a wide range of
file system drivers6 and a wide range of legacy and modern storage
drivers7 are available.

Aside from strong isolation, our storage server transparently re-
covers from faults without incurring significant overheads, which is
a well-known and complex task for stateful subsystems. We present
state virtualization and flying data recovery for our transparent
fault recovery. For state virtualization, we separate storage states
into two classes: one that is invariant and the other one that can
be restored afterwards. The invariant states are preserved on the
6We evaluated ext3, but more file systems are available.
7We evaluated NVMe, but many other storage devices are supported.
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application side and readily available during fault recovery, while
all other states can be recovered from the hypervisor’s memory.

Our storage server’s and file system server’s IVMC builds on
recent advances in concurrent data structures by using state-of-
the-art ring buffers, which make our storage server IVMC more
scalable than those that rely on traditional ring buffers found in
typical hypervisors (e.g., Xen). Our special IVMC design also helps
to restore storage states during fault recovery without sacrificing
performance in the critical data path.

The evaluation results demonstrate that the file system server
and the storage server exhibit scalable IVMC, comparable perfor-
mance with that of Linux, and transparent failure recovery.

Availability
The code is available at https://github.com/ssrg-vt/rumprun-servers.
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