
On The Decidability Of Disassembling Binaries⋆

Daniel Engel 1, Freek Verbeek 1,2, and Binoy Ravindran 2

1 Open University, 6419 AT Heerlen, The Netherlands
{daniel.engel,freek.verbeek}@ou.nl

2 Virginia Tech, VA 24061 Blacksburg, United States
binoy@vt.edu

Abstract. The general consensus is that disassembly of binaries is un-
decidable. The cause lies in distinguishing instructions from data, and
resolving indirections. Furthermore, binaries can behave in “weird” ways
which have no counterpart in assembly languages, e.g., instructions may
overlap, or use other instructions as data. Yet, the general consensus
is that, for a large part of production binaries, disassembly works suf-
ficiently well for the use cases at hand. This paper aims to address the
question: for which binaries is disassembly decidable? For which binaries
can disassembly become decidable if an external oracle, e.g., provides the
set of instruction addresses, or resolves indirections? We present a set of
five theorems on decidability of disassembly; each theorem corresponding
to a use case. All five theorems are accompanied by a proof of correctness
based on bisimilarity between the input binary and the output assembly
program, and have been formalized in the Isabelle/HOL theorem prover.

Keywords: Disassembly · Formal Methods · Decidability

1 Introduction

Disassembling is the process of retrieving an assembly program for a given binary.
It is a well-known fact in the decompilation community that it is not possible
to create an algorithm which, for every binary, performs disassembling in such a
way that the semantics of the assembly program is equivalent to the semantics
of the original binary [7,15,18,23,28,31]. The bytes in a binary do not indicate
whether they encode instructions (i.e., the program text) or raw data. In order
to decide this, one must know which bytes are reachable as the start of an
instruction and which are unreachable by any execution of the program, which
is an undecidable problem [24].

Matters are complicated by the ability of binaries to behave “weirdly” [6].
They may read their program text as raw data, modify its instructions to dy-
namically change the control flow, execute raw data as instructions or jump into
⋆ This is the author’s version of the work posted here per the publisher’s guidelines for

your personal use. Not for redistribution. The final authenticated version is published
in the Proceedings of the 18th International Symposium on Theoretical Aspects of
Software Engineering (TASE 2024), Guiyang, China, July 29 - August 1, 2024.

https://orcid.org/0009-0004-0989-3869
https://orcid.org/0000-0002-6625-1123
https://orcid.org/0000-0002-8663-739X

the middle of an instruction. Most assembly languages do not allow such behav-
ior: there is a clear distinction between the program text and data, instructions
may not overlap and self-modification is usually not allowed. This may even
make it impossible to disassemble weird binaries to well-formed assembly code
to begin with.

This paper addresses the question in which scenarios is disassembling de-
cidable? A scenario is characterized by assumptions about the input binary,
oracles that provide information over the binary and requirements for the out-
put assembly program. The assumptions may allow or exclude binaries that
modify themselves, use text as data and vice-versa, jump into the middle of in-
structions, etc. These assumptions might be statically or dynamically verified,
or be enforced at compile time. The oracles may solve hard problems such as
reachability analysis or indirection resolution. They too could be created by a
static or dynamic analysis tool, or be created as an additional compilation ar-
tifact. The requirements enable different use cases in which disassembling is
needed. For example, in order to symbolically execute an assembly program, one
needs a Control Flow Graph (CFG), while recompiling into a binary requires a
byte-consistent assembly output.

In this work, we identify five scenarios for which we prove sound disassem-
bling to be decidable: 1. Debugging, for which the distinction between text and
data is unimportant, 2. Verification, for which an overapproximation of all reach-
able addresses is needed, 3. Traversing, for which an overapproximative CFG is
needed, 4. In Situ Patching, for which the encoding of instructions may not in-
fluence the behavior of other instructions, and 5. Decompilation for which entire
program sections need to be relocatable.

The contribution of this paper is a set of five theorems on decidability of
disassembly; one for each scenario. The theorems have been formally proven
correct in the Isabelle/HOL theorem prover [20]. The motivation behind these
theorems is twofold:

– Binaries are known to be opaque. Current research focuses on extending the
binary format with metadata that makes the binary analysis more tractable.
The Debugging With Arbitrary Record Formats (DWARF) format3 provides
debugging information, but is, in itself, not enough to recover, e.g., a CFG.
This paper aims to provide a formal answer to the question: what meta data
(i.e., oracles) should an extended binary format at least contain to make it
amenable for the aforementioned use cases?

– We argue that our effort effectively formalizes several properties that capture
the intuition of “normal” behavior for binaries (in contrast to their possible
“weird” behaviors). Lifting a binary to a semantically equivalent Intermediate
Representation (IR) requires that the binary behavior is expressible in that
IR. Self-modification, as a single example, generally is not. We thus formalize
negations of “weird” behaviors such as the aforementioned ones, and prove
that these properties allow lifting to IRs.

3 https://dwarfstd.org

2

https://dwarfstd.org

In the following section, we present an overview of these five scenarios to-
gether with the proofs that their respective disassembling is decidable. We also
contribute a meta theorem that allows combination of different scenarios. Sec-
tion 2 discusses the related work on decidability of disassembly. The overview of
Section 3 is presented in more mathematical rigor in Section 4. In Section 5, we
discuss the implications of the assumptions and oracles over the binaries, and the
limitations of our model of assembly programs. Section 6 provides a conclusion
and possible future work.

2 Related Work

The general consensus in related work is that disassembly is undecidable [1,
7, 9, 10, 15, 27, 31]. Cifuentes phrases the intuition as follows: «Given a binary
program, the separation of data from code, even in programs that do not allow
such practices as self-modifying code, is equivalent to the halting problem, since
it is unknown in general whether a particular instruction will be executed or
not (e.g. consider the code following a loop).» [9]. This observation has triggered
research into incorporating heuristics into disassembly algorithms [21], or in
applying machine learning to disassemble binaries [14, 22, 32]. These techniques
aim to be precise but acknowledge they can never be provably sound. Wartell et
al. explicitly state that «fully correct x86 disassembly is provably undecidable:
Bytes are code if and only if they are reachable at runtime - a decision that
reduces to the halting problem.» [32].

Yet, one can take a binary, overapproximate the set of reachable instruc-
tion addresses by taking the entire address space of the binary, and run a
per-instruction disassembler on each address. Assuming trust in a per-single-
instruction disassembler, the result is sound and recompilable to a byte-equivalent
binary [26], and the process is clearly decidable. Thus: disassembly is decidable.
This observation has triggered research into disrupting a static disassembler
through obfuscation [11, 17] to provide protection against intellectual property
theft in case of closed-source software.

The reconciliation between these two contradictory statements is that both
are true, depending on the definition of “disassembly”. If “disassembly” is defined
as lifting a binary to a representation with solely the requirement that the IR
is executable, then the above argument for decidability holds. This is exactly
what we formalize as Theorem 1 in Figure 1 (which will be discussed in the
next section). However, if “disassembly” is defined as lifting to an IR with more
requirements (which is often implicitly done in literature), it becomes undecid-
able and oracles are needed. For example, disassembly to a representation that
can be recompiled without fixing the location of the text- and datasections in
memory, is undecidable as it requires resolving indirections (this is the argument
by Cifuentes quoted above). This is exactly the statement made in Theorem 5
in Figure 1.

3

To the best of our knowledge, there is no existing work that aims to formalize
how decidability of disassembly depends on the definition of “disassembly”, on
its requirements and use cases, and on the assumptions made over the binaries.

3 Overview

This section provides a semi-formal overview over the theorems proven in this
paper. We formally define the meaning of a decidability theorem for disassem-
bling, and informally present and discuss different properties for both binary
and assembly programs, which are used as the assumptions and requirements.
This combines into a set of decidability theorems as shown in Figure 1.

We model both binaries and assembly programs to abstract over all kinds
of real-world architectures. Binaries are partial maps from addresses to bytes.
Assembly programs consist of two partial maps, one from addresses to bytes (the
program data) and one from addresses to instructions (the program text). Both
mark sections of the program to be executable, readable or writable.

The semantics for both are given as unlabeled transitions systems. Programs
are executed in an environment Γ which contains the offset at which the program
is loaded into memory, and the addresses and semantics of external symbols. The
semantics for a binary β in environment Γ are denoted TS (Γ ;β), and are defined
as straightforwardly as possible. The initial states have their instruction pointer
(RIP) set to the entry point of the binary β and all of its bytes are loaded
into memory. Transitions are given by fetching the bytes at the current RIP,
decoding them as an instruction and executing it. The semantics for an assembly
program, denoted by TS (Γ ;α), are defined similarly, with the difference that the
instructions are fetched directly from α’s program text, not from memory. Note
that the binary semantics allow self-modification while the assembly semantics
do not.

3.1 Theorems

A disassembler is a computable function that takes as input an binary and a
(possibly empty) set of oracles, and produces an assembly program as output.
Assumptions are predicates over binary programs, requirements are predicates
over assembly programs. Oracles can be used by the disassembler function to
retrieve information about the binary program. We use the standard notion of
bisimilarity [3] (notation ≃) as the correctness relation between the assembly
and binary semantics.

Definition 1 (Sound Disassembler). Given assumptions A, requirements R
and oracles O, a disassembler d is sound iff, for every binary β for which the
assumptions hold, the resulting assembly program α fulfills the requirements and
the semantics are bisimilar.

sound(d ,A,O,R) := ∀β, Γ · A(β) =⇒ (R(α) ∧ TS (β;Γ) ≃ TS (α;Γ))

where α = d(β,O)

4

Executable Assembly Programs Theorem 1
Use Case: Debugging, Testing

NSM
∅7−−−−−−−→ consistent

Overapproximative Assembly Programs Theorem 2
Use Case: Verification

NSM
{reachp}7−−−−−−−→ completep, NSM

Traversable Assembly Programs Theorem 3
Use Case: Model Checking, Symbolic Execution

NSM
{indirectp}7−−−−−−−→ CFGp, NSM

Byte-Independent Assembly Programs Theorem 4
Use Case: In Situ Patching

NSM, NJiM, NRefl ∅7−−−−−−−→ NJiM, NRefl, consistent

Relocatable Assembly Programs Theorem 5
Use Case: Patching, Decompilation

NSM, NJiM, NRefl, PIE
{indirectp}7−−−−−−−→

NJiM, NRefl, NSM,
CFGp, PIE, consistent

Fig. 1. Overview of the five decidability theorems. The set of properties on the left
are the assumptions made over the input binary, the set of properties on the right are
the requirements over the output assembly program guaranteed by the disassembler,
the set of oracles on the arrow are the oracles needed for the scenario.

Definition 2 (Decidability Theorem). Disassembling from a set of binaries
fulfilling assumptions A to a set of assembly programs fulfilling requirements R
using oracles O is decidable iff a sound disassembler exists. We use the notation
A O7−→ R to denote this decidability.

A O7−→ R := ∃d · sound(d ,A,O,R)

Executable Assembly Programs can be used to interactively debug the bi-
nary. In a debugging scenario, the user is only interested in the instructions that
are executed and not in semantic properties such as the distinction between in-
structions and data, the overlapping of instructions with each other and with
data, or the entire CFG of the program. For this, the assembly program is only
required to be byte-consistent, meaning that any overlapping instructions or any
instructions overlapping with data must agree on their byte encoding. The only
assumption on the binary is that it is non self-modifying (NSM) since our assem-
bly semantics do not capture self-modifying behavior. Byte-consistency does not

5

need to be assumed on binaries since all binaries are byte-consistent. Intuitively,
the disassembler can decode the bytes at every address in the binary, regardless
of whether or not they are reachable, as both text and as data, as this distinction
is not important for debugging.

Overapproximative Assembly Programs can be used to verify safety prop-
erties such as absence of buffer overflows or probing functions return normally. In
order to do so soundly, a verification tool needs a complete set of all instructions
that may be reachable. A disassembler thus requires some oracle that provides
a set containing at least all reachable addresses of the binary. The precision of
the verification increases with a more precise (smaller) reachability oracle. In
order for the oracle to correctly model all reachable instructions, the assembly
program and thus the binary are assumed to be NSM.

Traversable Assembly Programs extend overapproximative assembly pro-
grams by enabling static traversal of the program in order to perform model
checking techniques [5, 16], abstract interpretation [4, 19] or symbolic execu-
tion [12, 25]. In order to traverse the program, it is not enough to know which
instructions are reachable, but rather which instructions can be directly reached
from which other instructions. In the realm of low-level programs, the construc-
tion of CFGs is even more difficult than for high-level programs since indirect
jumps are ubiquitous. Examples for indirect jumps include jump instructions
to dynamically computed addresses such as jmp RAX, calls to callbacks such as
call RDI or even simple return statements ret, as they need to load the re-
turn address from the stack to indirectly jump to it. A disassembler creating
traversable programs may use an indirection oracle to build the CFG.

Byte-Independent Assembly Programs have semantics that do not depend
on the encoding of instructions. This allows for in situ patching where individual
instructions are changed without affecting the semantics of unchanged instruc-
tions [13]. The three properties that guarantee that the encoding does not in-
fluence the behavior are: 1. NSM so that the program cannot change individual
bytes in an instruction, 2. non reflexive (NRefl) so that the program cannot read
the encoding of instructions as raw bytes, and 3. no jumps in the middle (NJiM)
so that the partial encoding of instructions cannot be interpreted as new instruc-
tions. In addition to these properties, the assembly program needs to be able to
be assembled into a binary again, requiring it to be byte-consistent.

Relocatable Assembly Programs extend the use case of in situ patching by
making entire program sections relocatable. On the one hand, this is needed for
full scale patching for which new instructions may be introduced, requiring later
instructions to be moved to other addresses. On the other hand, this is needed
by further decompilation steps such as symbolization, for which sections need to
be moved from constant offsets to arbitrary, more abstract program points. In

6

addition to the byte-independence properties consistent, NSM, NRefl and NJiM,
relocatable programs also need to be position independent executables (PIEs).
Position independence means that the offset at which the program is loaded into
memory does not affect the program behavior, thus parts of the program can be
relocated to arbitrary offsets.

The properties used in Figure 1 are semantic properties, i.e., they are for-
mulated as properties over the transition systems provided by TS (Γ ;β) and
TS (Γ ;α). As example, NSM is defined as “if an address is a reachable instruc-
tion address, then there exists no execution that writes to that address”. Such
a property can be hard to verify. However, several properties have a syntactic
counterpart that enforces the semantical property by construction. For exam-
ple, NSM can be enforced if the executable address space does not overlap with
the writable address space (denoted with X⊼W). For binaries that enforce the
desired semantical properties syntactically, there is no need to verify whether
the binary satisfies the assumptions. The syntactic version implies its semantic
counterpart.

Table 1 presents an overview of the properties used in Figure 1, all of which
will be formally defined in Section 4.

Semantic Syntactic Description Definitions
consistent† The overlapping bytes of different instruc-

tions and data match
Definition 5

NSM‡ X⊼W The program does not change its text at
runtime

Definitions 10,6

NRefl X⊼R The program does not read its instructions
as data

Definitions 11,7

NJiM mosaic The control flow does not lead into the
middle of an instruction

Definitions 12,8

PIE The semantics do not depend on the offset
where the program is loaded into memory

Definition 13

completep All reachable addresses are known, there
are at most p addresses

Definition 14

CFGp The complete control flow is known, there
are at most p edges

Definition 15

†: Always true for binaries; ‡: Always true for assembly programs.

Table 1. Overview of the properties used as assumptions and requirements. The first
two columns are the semantic and syntactic version of the property, most syntactic
properties are only defined for assembly programs.

7

3.2 Meta Theorem

The theorems presented in Section 3.1 represent individual scenarios in which
disassembling a binary can be used to enable certain use cases while guaranteeing
preservation of the semantics. In addition to these five theorems, we show that
the requirements and assumptions used in these theorems can be combined to
create new scenarios.

In order to show that the combination of the five theorems is possible, we
first need to define the merge function for disassemblers. Merging is done by
applying both disassemblers to the input binary and oracles, and keeping the
parts both resulting assembly program agree on. In particular, for the text and
data, at every address, the instruction or byte both assembly programs have
at that address is kept in the result. The different program sections are joined,
meaning each address of the merged assembly program is only marked as exe-
cutable/writable/readable iff it is in both original assembly programs. The en-
try address can be arbitrarily chosen from the original assembly programs. If
the disassemblers are sound then the entry addresses of both original assembly
programs must be equal.

Definition 3 (Merging of disassemblers). The merge function is a higher
order function taking two disassemblers d1, d2 as an input and returning a dis-
assembler that combines the outputs of d1 and d2.

merge(d1, d2)(β,O) :=⟨text ′, data ′, X1 ∩X2,W1 ∩W2, R1 ∩R2, E1⟩
where ⟨text1, data1, X1,W1, R1, E1⟩ := d1(β,O)

⟨text2, data2, X2,W2, R2, E2⟩ := d2(β,O)

text ′(a) :=

{
i if text1(a) = text2(a) = i

∅ otherwise

data ′(a) :=

{
b if data1(a) = data2(a) = b

∅ otherwise

Theorem M (Combination of Scenarios). For any two sound disassemblers
d1 and d2 presented in Figure 1, the merged disassembler is sound:

sound(d1,A1,O1,R1) ∧ sound(d2,A2,O2,R2)

=⇒sound(merge(d1, d2),A1 ∧ A2,O1 ∪ O2,R1 ∧R2)

In particular, this means:

A1
O17−−→ R1 ∧ A2

O27−−→ R2 =⇒ (A1 ∧ A2)
(O1∪O2)7−−−−−−→ (R1 ∧R2)

Proof. Given the input binaries β1, β2, the assumptions, requirements and ora-
cles A1,A2,R1,R2,O1,O2, and the sound disassemblers d1, d2, let the resulting
programs α1 = d1(β1,O1), α2 = d2(β2,O2) and α′ = merge(d1, d2)(β,O1 ∪ O2).

8

By soundness of the the disassemblers, we have for all Γ , TS (α1;Γ) ≃ TS (α2;Γ).
This is implies that α1 and α2 must agree on all reachable instructions and on
all bytes that are loaded or stored. Since merging keeps all instructions and data
both programs agree upon and since they are bisimilar, the resulting program α′

must also be bisimilar to α1 and α2.
We need to show that that all properties are preserved in α′ as long as they

are fulfilled by either α1 or α2. consistent is preserved as α′ only contains the
bytes α1 and α2 agree upon. The semantic properties NSM, NRefl and NJiM are
preserved by bisimilarity of the transition systems TS (α1;Γ), TS (α2;Γ) and
TS (α′;Γ). Merging does not introduce any new instructions, as only the ones
α1 and α2 agree on are kept, so no new instruction can read, write or overlap
with other instructions. Preservation of PIE follows directly from bisimilarity.

From completep(α1) and completeq(α2), we have completer(α
′), for some r

where r ≤ min(p, q). The set of reachable addresses in α′ must have at most as
many bytes as the smaller one from α1 and α2 since only the bytes both agree
on are kept. This set contains at least all reachable addresses as α′ is bisimilar
to α1 and α2. The same reasoning holds for CFGp.

4 Formalization

This section provides more mathematical rigor for the definitions used in Sec-
tion 3. Our model of the low-level languages runs on an abstract machine with
an infinite address space. We use α for assembly programs, β for binaries, π for
programs that can be either of the two, ω for oracles, ψ for abstract machine
states and Γ for execution contexts. We use ψ[a] for a memory read or write in
state ψ at address a.

We first present the syntax and syntactic properties of assembly programs
and binaries. Both assembly programs and binaries contain partial mappings
from addresses to some form of data. Binaries only contain raw bytes as they
serve the dual purpose as instructions (summarized in Table 4) to be decoded,
and as data. Assembly programs make a distinction between these two forms
of information. Additionally, both assembly and binaries contain indications for
eX ecutable, Readable and W ritable sections and an Entry address.

Definition 4 (Programs). Assembly programs and binaries are tuples con-
taining the program text and data, or the raw bytes representing them, a set for
each the executable, readable and writable addresses and an entry address.

Asm := ⟨ text : Addr ⇀ Instr ,

data : Addr ⇀ Byte,

X : {Addr},W : {Addr},
R : {Addr},E : Addr ⟩

Bin := ⟨
bytes : Addr ⇀ Byte,

X : {Addr},W : {Addr},
R : {Addr},E : Addr ⟩

Both types of programs are subject to well-formedness conditions to ensure
their semantics are well-defined. For all assembly programs α and binaries β, we
have:

9

reachable(α) ⊆ dom(text(α)) ∧
dom(data(α) ⊆W (α) ∪R(α)) ∧
dom(text(α) ⊆ X(α))

reachable(β) ⊆ dom(fetch(β)) ∧
dom(bytes(β)) ⊆ (W ∪R ∪X)(β))

The syntactic properties over both types of programs can be easily checked,
and overapproximate the semantic properties used in Figure 1. Byte-consistency
describes that the bytes of overlapping instructions and data in assembly pro-
grams must agree with another, ensuring the assembly program can be assembled
into a binary. For binaries, there is no distinction between text and data and
there can only ever be at most one byte at an address. Thus, binaries always
fulfill this property. A mosaic assembly program does not have any overlapping
instructions, as such, it does not allow for any jumps into the middle of instruc-
tions. The properties X⊼W and X⊼R ensure that the text-sections of a program
do not overlap with the data sections. In turn, programs fulfilling these proper-
ties cannot, by construction, modify themselves, or read the encoding of their
own instructions.

Definition 5 (Byte-Consistency). An assembly program α is byte-consistent
iff, for every address a, the bytes of overlapping instructions agree with another
and with the data bytes at a. Let text−bytes be the function that returns the
set of bytes corresponding to the decoding of all instructions that are at a given
address.

byte−consistent(α) := (∀a · data(a) = b =⇒ b ∈ text−bytes(α, a))

∧ (∀a · |text−bytes(α, a)| ≤ 1)

Definition 6 (No Execute Where Write). The property X⊼W describes
that no address is both in an executable and a writable section.

X⊼W (π) := X (π) ∩W (π) = ∅

Definition 7 (No Execute Where Read). The property X⊼R describes that
no address is both in an executable and a readable section.

X⊼R(π) := X (π) ∩ R(π) = ∅

Definition 8 (Mosaic). An assembly program α is mosaic iff no two instruc-
tion in the program text overlap.

mosaic(α) := ∀(a1, a2 ∈ dom(text(α))) · ¬(a1 ≤ a2 < a1 + |text(α, a1)|)

Programs have no a priori knowledge of where they are loaded into memory
or the behavior of dynamically linked (external) symbols. This information is
captured in the execution context Γ .

The semantics for both binary and assembly programs are given as unlabeled
transition systems. We write TS (α;Γ) and TS (β;Γ) for the transition system

10

Opcode Arguments Behavior
halt ∅ Stops program execution.

const (ρ : Reg)(v : Z) Writes the constant v into register ρ.
load (ρd, ρs : Reg) Reads address a from register ρs, reads value v from

memory at a, writes v into register ρd.
store (ρd, ρs : Reg) Reads address a from register ρd, reads value v from

register ρs, write v into memory at a.
cond (ρc, ρd, ρs : Reg) Reads value c from register ρc, if c ̸= 0: Reads value

v from register ρs, writes v into register ρd.
size (ρd, ρs : Reg) Reads value v from register ρs, writes the number of

bytes needed to represent v into register ρd.
symb (ρ : Reg)(s : Sym) Queries the execution context for the address a of the

symbol s, writes a into register ρd.
apply (f)(ρd, ρ1, ρ2 : Reg) Reads values v1, v2 from registers ρ1, ρ2, writes

f(v1, v2) into register ρd.
Table 2. Generic instruction set used for the binary and assembly languages. Real-
world instructions can be built from one or multiple instructions above. For example,
add RAX, 42 can be modeled by const ρtmp, 42 ; apply (+), RAX, RAX, ρtmp.

describing the execution of the assembly program α or the binary β. The initial
states have all bytes of the program loaded into memory at the loading offset of
Γ . Transitions between states are given 1. for binaries by fetching bytes at RIP
from memory and decoding them as instructions, 2. for assembly programs by
fetching the instruction at RIP from the program text, and then executing them
according to Table 4. Addresses within the domain of the bytes for a binary or
data for an assembly program can only be read if they are elements of the R set,
and only be written if they are elements of the W set. Similarly, addresses can
only be fetched as instructions if they are within in X set.

Definition 9 (Execution Context). The execution context is a tuple con-
taining the load address, the location and the semantics of external symbols.

Ctx := ⟨ load−addr : Addr , externs : Sym → Addr ,

extern−sem : Addr ⇀ State × State ⟩

The semantic properties define constraints over states reachable from the
entry point of a program. All of them use the notations reachablen(ts, ψ) and
reachable(ts, ψ) indicating that state ψ is reachable within n steps or any number
of steps in the transition system ts. A binary is non self-modifying if no mem-
ory write occurs within the boundaries of its executable sections. For assembly
programs, the instructions are not fetched from memory, thus they do not have
a notion of self-modification. Similarly, a program is non reflexive if no memory
read occurs within its executable sections. The property no jump-in-the-middle
captures that no two states are reachable for which the current instructions
overlap with another. A program is position independent if its semantics do not
depend on the execution context’s loading offset.

11

Definition 10 (No Self-Modification). A binary is non self-modifying (NSM)
iff no memory writes occurs within the executable sections.

NSM(β) := ∀Γ, α, ψ1, ψ2, n·
reachablen(TS (β;Γ), ψ1) =⇒
reachable(n+1)(TS (β;Γ), ψ2) =⇒
ψ1[a] ̸= ψ2[a] =⇒ a /∈ dom(X (β))

Definition 11 (No Reflexivity). A binary or assembly program is non reflex-
ive (NRefl) iff the encoding of any instruction other than the current one does
not influence the behavior of the current instruction.

NRefl(π) := ∀Γ, π′, ψ1, ψ2, ψ
′
2·

reachablen(TS (π;Γ), ψ1) ∧ reachablen(TS (π
′;Γ), ψ1) =⇒

reachable(n+1)(TS (π;Γ), ψ2) ∧ reachable(n+1)(TS (π
′;Γ), ψ′

2) =⇒
ψ2 = ψ′

2

Definition 12 (No Jump-In-The-Middle). A binary or assembly program
fulfills the no jumps in the middle (NJiM) property iff there are no two instruc-
tions reachable which overlap with another.

NJiM(π) := ∀Γ, (ψ1, ψ2 ∈ reachable(TS (π;Γ))·
¬(RIP(ψ1) ≤ RIP(ψ2) < RIP(ψ1) + |fetch(π, ψ1, RIP(ψ1))|)

Definition 13 (Position Independent Executable). A binary or assembly
program is a position independent executable (PIE) iff the offset at which it is
loaded into memory does not influence the semantics of the program.

PIE(π) := ∀Γ, a1, a2 · TS (π;Γ (load−addr := a1)) = TS (π;Γ (load−addr := a2))

Finally, a binary or assembly program is completep if all reachable reachable
addresses are known in a set of cardinality p. The set containing these addresses
is the reachability oracle reachp. Here, p serves as a precision metric, the smaller
p is, the greater the precision of the oracle. Without the precision metric, gen-
erating the oracle would become trivial as one can overapproximate the set of
reachable addresses by all addresses. Similarly, the program has a known CFGp

if all pairs of successively reachable addresses are known in a set of cardinality
p, the corresponding oracle is the indirection oracle indirectp. Again, p serves
as the precision metric counting the edges in the CFG. One could trivially over-
approximate this oracle by considering all addresses reachable from all other
addresses.

Definition 14 (Complete). An assembly program or binary π is completep iff
there exists a set containing at least all reachable addresses.

completep(π) := ∃ω · |ω| ≤ p ∧ ∀Γ · reachable(TS (π;Γ)) ⊆ ω

12

Definition 15 (Known Control Flow). A binary or assembly program π has
a known control flow (CFGp) iff for all reachable addresses the immediately next
reachable addresses are known and the resulting CFG contains p edges.

CFGp(π) := ∃ω · |ω| ≤ p ∧ ∀Γ, ψ1, ψ2, n·
reachablen(TS (π;Γ), ψ1) =⇒
reachable(n+1)(TS (π;Γ), ψ2) =⇒
⟨ψ1, ψ2⟩ ∈ ω

5 Discussion

The formalization of binary and assembly languages presented in Sections 3 and 4
make certain assumptions over the semantics of assembly languages, the avail-
ability of oracles for the translations, and properties of the input binaries.

5.1 Self-Modification

Our model of assembly languages contains static program text. Instructions are
fetched directly from an unchangeable assembly program instead of being dynam-
ically loaded from memory, which stands in contrast to what binaries do. There
do exist formalizations of self-modifying assembly programs such as [2,8,29], but
for the purposes of this paper, non-self-modifying assembly programs are better
suited.

Static Program Text is what one usually wants from a disassembler, as it
allows the program text to be analyzed easier. The disadvantage is that the
runtime semantics between a binary, which always has a dynamic program text,
and the assembly program can differ, even when they initially contain the same
instructions. Figure 2 shows an example program where a memory write alters
the dynamic text of the binary by changing the last instruction while the static
text of the assembly program remains unaltered.

self_modification_bin:
; Overwrites the next instruction
mov BYTE [RIP], 0xC3

; Changes to a ret (0xC3)
nop

self_modification_asm:
; Does not influence the text
mov BYTE [RIP], 0xC3
; Remains a nop in the text
; Changes to a 0xC3 in memory
nop

Fig. 2. Difference in semantics between a binary (left) and an assembly program
(right). Both write 0xC3 into memory where the next address will be. For the binary,
this changes the program text since instructions are fetched from memory. For the
assembly program, the memory does not influence the program text.

13

Dynamic Program Text models the semantics of both the binary and the
assembly program in the same way. Programs such as the one in Figure 2 behave
the same for binaries and assembly programs with a dynamic program text. The
disadvantage of a dynamic assembly program text is that the lines between text
and data are necessarily blurred. Figure 3 shows two example assembly programs
with different instructions but the same binary encoding. Under dynamic seman-
tics, where instructions are loaded from memory, these two programs behave the
same. For this work, this would make disassembling always trivial as one would
never need to resolve the starting addresses of any instructions, as any binary
with the correct encoding would be considered bisimilar.

push RBP ; 55
mov RBP, RSP ; 48 89 E5
call printf ; E8 00 00 00 00
add RAX, 5 ; 48 83 C0 05

.bytes 0x894855 ; 55 48 89
in EAX, 0xe8 ; E5 E8
add [RAX], AL ; 00 00
add [RAX], AL ; 00 00
add RAX,0x5 ; 48 83 C0 05

Fig. 3. Self-Modifying semantics for assembly programs allow even incorrect disassem-
blers to be considered correct. The original program (left) and the incorrectly disas-
sembled (right) program will have the same behavior under self-modifying semantics.
Both contain exactly the same bytes, so fetching instructions from memory will result
in the same execution traces. At the same time, both program have instructions with
completely different semantics.

5.2 The Oracles

Figure 1 makes use of an oracle to overapproximate all reachable addresses
(reachp) and an oracle to overapproximate the CFG (indirectp). Neither of
these is available in any current debugging format like DWARF. We discuss
whether – and how – these oracles can be obtained either at compile-time (when
source code is available), or from a stripped binary (when source is not available).

Both can be implemented trivially by overapproximation of the actual ad-
dress space and CFG if one considers all addresses to be reachable from all other
addresses. However, such an overapproximation would be practically unusable
for any real use cases and generating them with a high precision proves to be a
difficult problem.

From Source Code. At the source code level, one might expect the information
to generate the oracles to be present. For example, the instruction selection
phase of a compiler emits all intended instructions and the linker assigns them
their final addresses. Based on this information, the compiler might create a
reachability oracle by emitting all these addresses as an additional artifact.

However, this only captures the intended instruction addresses, reachable
from well-behaved source-level code. At runtime, unexpected behaviors like stack

14

overflows may cause the program to set its RIP to an unintended address. In this
case, the oracle is no longer a sound overapproximation of all reachable addresses.

For the indirection oracle, the intended addresses are not fully known, not
even at compile time. Indirections are ubiquitous in binaries as they are used for
the jump tables in control flow constructs like switch statements, implement the
mechanism used in return statements, and model the invocation of callbacks.
While jump tables might be fully known at compile time, it is not possible to
know all possible targets of return statements as this would require a full call
graph. Moreover, note that even at the source level unresolved indirections may
exist due to, e.g., callbacks.

Still, these artifacts can prove valuable in security analyses and binary hard-
ening, even if they only capture the intention of the compiler. If the set of
intended addresses is known, one can analyze the program to see if any address
outside this set is reachable, uncovering a vulnerability rooted in low-level be-
havior not present in the source code. Similarly, one can harden the binary by
adding a check before indirect jumps to abort the program if any unintended
address is reached.

From Binary Code. At the binary level, the information needed to create
the oracles must be recovered directly from the binary itself. In practice, the two
oracles conflate, i.e., in order to get the set of reachable instruction addresses one
must recover an overapproximative CFG. Deriving an overapproximative CFG
requires establishing binary-level invariants that statically bound the values that
certain state parts may have at run-time, in order to resolve indirections. This
is known hard problem [30].

Real-world disassemblers try to uncover this information by one of two ap-
proaches: 1. Linear Sweep, or 2. Recursive Traversal. Tools such as objdump
start at an entry address and linearly sweep through the section they try to
disassemble. The instruction at the current address is decoded and the address
is incremented by the instruction’s size. For simple binaries, this approach works
well, but as soon as text and data are mixed in unexpected ways, a linear sweep
will fail to distinguish them. More sophisticated tools such as the disassemblers
used in Ghidra, IDA-Pro or Binary Ninja, aim to decode all reachable instruc-
tions by following the binary’s control flow. In contrast to a linear sweep, this
is able to distinguish text from data even when they are mixed but will still fail
for indirect jumps for which all possible successor edges in the CFG need to be
recognized.

Figure 4 shows an example program where both linear sweep and recursive
traversal will fail to produce the full and correct assembly code corresponding
to the binary. Both linear sweep and recursive traversal are able to decode the
instructions before a jump occurs (address 4000). The byte following that in-
struction (address 4002) is intended to be a raw data byte, but if one linearly
decodes all instruction in the snippet, it will be decoded as an incorrect instruc-
tion. If one instead follows the CFG to address 4003, the instructions of the
original program can be decoded. However, even recursively traversing the CFG

15

fails after the last instruction (address 4006) since it is impossible to know all
possible values of RAX.

4000: jmp $+1
4002: .byte 00
4003: sub RAX, RBX
4006: jmp RAX

4000: EB FF
4002: 00
4003: 48 29 D8
4006: FF E0

; Linear sweep decodes the first
; instruction
4000: jmp $+1
; But it will continue to
; disassemble after it
; 4002: 00 48 29
; 4005: D8 FF E0
4002: add [RAX+0x29],CL
4005: fdivr st,st(7)

; CFG traversal can resolve all 3
; instructions correctly
4000: JMP jmp $+1
4002: .byte 00
4003: sub RAX, RBX
; But it will not be able to continue
; correctly after an indirect jump
; to an unknown location
4006: jmp RAX

Fig. 4. An example program which cannot be correctly disassembled without the usage
of the indirection oracle. The top left shows the original assembly code, top right shows
the assembled result. The bottom left shows the result of linearly sweeping through
the program. The first instruction is decoded correctly, but continuing to disassemble
directly after it results in incorrect instructions. The bottom right shows the result
of traversing the CFG. This results in the correct instructions being decoded on the
snipped, but without further information, the indirect jump at the end means that the
traversal cannot continue.

6 Conclusion

Generally, it is not possible to disassemble every binary into an equivalent as-
sembly program. We provide a formalization for general binary and assembly
languages and show that in certain scenarios, they can be correctly translated
to each other. The key in showing that these translations are possible is to lift
restrictions on the assembly language which are useful for writing assembly code
by hand but are not always needed when doing disassembling.

In order to perform the disassembling correctly, oracles to enumerate the
address space or resolve indirections may be needed. Generating these oracles
itself can be an undecidable problem. Future work may see these oracles be
implemented at compile time by leveraging information that is already known.

In this paper, we only examine the first step of many in a decompilation
chain: converting a raw binary to an assembly program in which instructions
are referenced by addresses. Further steps of de- and recompilation require the
assembly program to be in a symbolized format, meaning that instructions can be
referenced by abstract program labels. This requires a thorough pointer analysis,
which could be a third oracle. In contrast to the assembly language presented

16

in this work, one does not only need to distinguish between instructions and
data, but also between addresses pointing to instructions and addresses pointing
to data. Similar to the resolution of indirections, a sound and complete pointer
analysis is not possible in the general case. But one may ask the question “In
which scenarios can data- and text-pointers be told apart?”. Future work may
see an extension of the Isabelle code-base presented here with a third language:
symbolized assembly ; and theorems describing the conversion between assembly
and symbolized assembly.

References
1. Xiaoxin An, Freek Verbeek, and Binoy Ravindran. DSV: Disassembly soundness

validation without assuming a ground truth. In NASA Formal Methods Sympo-
sium, pages 636–655. Springer, 2022.

2. Bertrand Anckaert, Matias Madou, and Koen De Bosschere. A model for self-
modifying code. volume 4437, pages 232–248, 07 2006.

3. Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

4. Gogul Balakrishnan, Radu Gruian, Thomas Reps, and Tim Teitelbaum.
Codesurfer/x86—a platform for analyzing x86 executables. In International con-
ference on compiler construction, pages 250–254. Springer, 2005.

5. Gogul Balakrishnan, T Reps, Nicholas Kidd, Akash Lal, Junghee Lim, David Mel-
ski, Radu Gruian, S Yong, C H Chen, and Tim Teitelbaum. Model checking x86
executables with Codesurfer/x86 and WPDS++. In Computer Aided Verification:
17th International Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10,
2005. Proceedings 17, pages 158–163. Springer, 2005.

6. Julian Bangert, Sergey Bratus, Rebecca Shapiro, and Sean W Smith. The {Page-
Fault} weird machine: Lessons in instruction-less computation. In 7th USENIX
Workshop on Offensive Technologies (WOOT 13), 2013.

7. Guillaume Bonfante, Jose Fernandez, Jean-Yves Marion, Benjamin Rouxel, Fabrice
Sabatier, and Aurélien Thierry. Codisasm: Medium scale concatic disassembly of
self-modifying binaries with overlapping instructions. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, CCS ’15,
page 745–756, New York, NY, USA, 2015. Association for Computing Machinery.

8. Guillaume Bonfante, Jean-Yves Marion, and Daniel Reynaud-Plantey. A com-
putability perspective on self-modifying programs. In 2009 Seventh IEEE Interna-
tional Conference on Software Engineering and Formal Methods, pages 231–239,
2009.

9. Cristina Cifuentes. Reverse compilation techniques. Queensland University of Tech-
nology, Brisbane, 1994.

10. Fred Cohen. Computer viruses: theory and experiments. Computers & security,
6(1):22–35, 1987.

11. C.S. Collberg and C. Thomborson. Watermarking, tamper-proofing, and obfusca-
tion - tools for software protection. IEEE Transactions on Software Engineering,
28(8):735–746, 2002.

12. Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin Feist,
Marie-Laure Potet, and Jean-Yves Marion. BINSEC/SE: A dynamic symbolic
execution toolkit for binary-level analysis. In 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER), volume 1,
pages 653–656. IEEE, 2016.

17

13. Gregory J Duck, Xiang Gao, and Abhik Roychoudhury. Binary rewriting without
control flow recovery. In Proceedings of the 41st ACM SIGPLAN conference on
programming language design and implementation, pages 151–163, 2020.

14. Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Raychev, and Martin Vechev.
Debin: Predicting debug information in stripped binaries. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, pages
1667–1680, 2018.

15. Ulf Kargén, Ivar Härnqvist, Johannes Wilson, Gustav Eriksson, Evelina Holmgren,
and Nahid Shahmehri. desync-cc: A research tool for automatically applying disas-
sembly desynchronization during compilation. Science of Computer Programming,
228:102954, 2023.

16. Johannes Kinder, Stefan Katzenbeisser, Christian Schallhart, and Helmut Veith.
Detecting malicious code by model checking. In Detection of Intrusions and Mal-
ware, and Vulnerability Assessment: Second International Conference, DIMVA
2005, Vienna, Austria, July 7-8, 2005. Proceedings 2, pages 174–187. Springer,
2005.

17. Cullen Linn and Saumya Debray. Obfuscation of executable code to improve re-
sistance to static disassembly. In Proceedings of the 10th ACM conference on
Computer and communications security, pages 290–299, 2003.

18. Zhibo Liu and Shuai Wang. How far we have come: testing decompilation correct-
ness of c decompilers. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2020, page 475–487, New
York, NY, USA, 2020. Association for Computing Machinery.

19. Jorge A Navas, Peter Schachte, Harald Søndergaard, and Peter J Stuckey.
Signedness-agnostic program analysis: Precise integer bounds for low-level code.
In Programming Languages and Systems: 10th Asian Symposium, APLAS 2012,
Kyoto, Japan, December 11-13, 2012. Proceedings 10, pages 115–130. Springer,
2012.

20. Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof
assistant for higher-order logic, volume 2283. Springer Science & Business Media,
2002.

21. Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Georgios Portokalidis,
Bing Mao, and Jun Xu. SoK: All you ever wanted to know about x86/x64 binary
disassembly but were afraid to ask. In 2021 IEEE symposium on security and
privacy (SP), pages 833–851. IEEE, 2021.

22. Kexin Pei, Jonas Guan, David Williams-King, Junfeng Yang, and Suman Jana.
Xda: Accurate, robust disassembly with transfer learning. arXiv preprint
arXiv:2010.00770, 2020.

23. Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar. Accurate disassembly of
complex binaries without use of compiler metadata. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 4, ASPLOS ’23, page 1–18, New York,
NY, USA, 2024. Association for Computing Machinery.

24. H. G. Rice. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74(2):358–366, 1953.

25. Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn Song. Loop-
extended symbolic execution on binary programs. In Proceedings of the eighteenth
international symposium on Software testing and analysis, pages 225–236, 2009.

26. Eric Schulte, Jason Ruchti, Matt Noonan, David Ciarletta, and Alexey Loginov.
Evolving exact decompilation. In Workshop on Binary Analysis Research (BAR),
2018.

18

27. Benjamin Schwarz, Saumya Debray, and Gregory Andrews. Disassembly of ex-
ecutable code revisited. In Ninth Working Conference on Reverse Engineering,
2002. Proceedings., pages 45–54. IEEE, 2002.

28. Ali Aydın Selçuk, Fatih Orhan, and Berker Batur. Undecidable problems in mal-
ware analysis. In 2017 12th International Conference for Internet Technology and
Secured Transactions (ICITST), pages 494–497, 2017.

29. Tayssir Touili and Xin Ye. Ltl model checking of self modifying code. Formal
Methods in System Design, 60(2):195–227, 2022.

30. Freek Verbeek, Joshua A. Bockenek, Zhoulai Fu, and Binoy Ravindran. Formally
verified lifting of c-compiled x86-64 binaries. In Ranjit Jhala and Isil Dillig, edi-
tors, PLDI ’22: 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, San Diego, CA, USA, June 13 - 17, 2022,
pages 934–949. ACM, 2022.

31. Richard Wartell, Yan Zhou, Kevin W. Hamlen, and Murat Kantarcioglu. Shingled
graph disassembly: Finding the undecideable path. In Vincent S. Tseng, Tu Bao
Ho, Zhi-Hua Zhou, Arbee L. P. Chen, and Hung-Yu Kao, editors, Advances in
Knowledge Discovery and Data Mining, pages 273–285, Cham, 2014. Springer In-
ternational Publishing.

32. Richard Wartell, Yan Zhou, Kevin W Hamlen, Murat Kantarcioglu, and Bhavani
Thuraisingham. Differentiating code from data in x86 binaries. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pages
522–536. Springer, 2011.

19

	On The Decidability Of Disassembling Binaries

