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Improving Operating System Security through Enhanced Isolation:
Intra-Unikernel Isolation and Storage Server for a Multiserver-Library
Operating System

Mincheol Sung

(ABSTRACT)

In the computer system stack, security of the operating system (OS) is arguably one of the

most important since it is a privileged and trusted entity that applications rely on. Modern

computer systems have increasingly large OS code bases, and consequently expose a large at-

tack surface. Isolation is a fundamental OS design principle, which can improve OS security,

among others. The principle, first employed in microkernel OSs, isolates OS components in

separate address spaces: a minimal set (e.g., process/memory management, scheduler, IPC)

is executed in the CPU privileged layer and all others (e.g., device drivers, networking, stor-

age) are executed in the unprivileged userspace layer. This enables localization of security

exploits, improving security. The principle was subsequently studied in numerous other OS

models including microkernel/multiserver OSs, exokernel/library OSs, kernel-bypass tech-

niques, and most recently in unikernel OSs.

In this dissertation, we present two techniques to enhance isolation in unikernel and multi-

server-library OSs. First, we present a technique for memory isolation within a unikernel OS.

In the unikernel OS model, an application is statically compiled together with the minimal

necessary OS components, programmed as a library OS, and executes in a single address

space. The resulting reduced code base and attack surface paradoxically also reduce security:

security vulnerabilities in unsafe kernel code or user code can be exploited to compromise

kernel code as they are not separated. Our technique prevents such exploits through their



isolation, while retaining unikernel’s single address space model. The technique leverages

recent commodity hardware primitive (i.e., Intel’s Memory Protection Keys) which enables

per-thread permission control over groups of virtual memory pages. We leverage language

macro features to provide unikernel library OS developers with a convenient way to annotate

code for isolation. Our implementation in the RustyHermit unikernel and evaluations reveal

that the technique achieves isolation with only 0.6% slowdown.

Second, we present a storage server in LibrettOS. LibrettOS combines the multiserver and

library OS models in the same OS design, enabling multiserver OS’s high isolation and li-

brary OS’s high performance in the same OS, and the ability to dynamically switch between

the two models at run-time for more effective resource utilization. LibrettOS lacks a storage

server, an essential system server in multiserver OSs. We present the design and imple-

mentation of a storage server for LibrettOS that transfers inbound and outbound block I/O

between applications and the storage device, while isolating applications and the storage

device, localizing security vulnerabilities. We build the storage server using the rumprun

unikernel, which allows us to leverage NetBSD’s NVMe driver with little engineering effort.

We leverage lock-free ring buffers and design an efficient IPC mechanism. Our evaluations

reveal that the storage server achieves comparable or superior performance compared with

rumprun and Linux.
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Chapter 1

Introduction

Security exploits of computer systems are now ubiquitous. In the computer system stack,

the security of the operating system (OS) is arguably one of the most important since it is a

privileged and trusted entity that applications rely on. Even though applications themselves

may take measures to defend against security threats, a vulnerable OS can easily jeopardize

those measures.

Traditional OSs execute all OS components in a single privileged layer for better perfor-

mance. This results in a monolithic design wherein OS subsystems such as that for process

management, memory management, file systems, storage, and networking, among others, as

well as all device drivers are given the same level of trust and thus execute with the same

CPU privilege within a single (kernel) address space. The monolithic design is increasingly

inadequate for modern OSs as their code size have become ever more larger. For example,

Linux, one of the most widely used monolithic OSs, has about 28 million lines of code [61].1

Broadly described, a large kernel code base inevitably exposes a large attack surface: any se-

curity vulnerability in a kernel component can be exploited to compromise the entire system.

The number of common vulnerabilities and exposures (CVEs) for kernel subsystems and de-

vice drivers continues to surge across popular monothilic OSs (see Figure 1.1). Tolerating

component failures with monolithic OS designs is also a challenge as a single component

failure can fail the entire system.

1This is for Linux kernel version 5.5.

1



(a) Linux kernel [31] (b) Windows kernel [26]

Figure 1.1: Number of CVEs of Linux and Windows kernels.

To improve OS security (and also reliability), a fundamental design principle studied in the

OS literature is isolation. Microkernel OSs [66], which first explored this principle, isolated

OS components in separate address spaces: minimal kernel components (e.g., process and

memory management, scheduler, IPC) are executed in the privileged layer and all other com-

ponents including device drivers are executed, together with applications, in the unprivileged

user space layer. This enables localization of security exploits and also component failures.

Multiserver OSs [30, 42, 45], which can be viewed as a type of microkernel design, implement

specific kernel subsystems such as file systems, storage subsystems, networking, and device

drivers as user space server processes. Applications communicate with the servers using IPC.

Although these OS designs improve security and reliability through compartmentalization

and isolation, they come at the price of performance. Crossing privilege layers through

IPCs, system calls, and mode switches are expensive, and consequently, microkernels and

multiserver OSs are not performance-competitive to monolithic OSs [40, 64].

Performance limitations due to the need to cross privilege layers can be overcome by imple-

menting kernel components as libraries; applications are built by composing them together

with the kernel libraries. This model, first proposed by Tom Anderson [6], was later imple-

mented in the exokernel model [34], and named the “library OS.” Kernel-bypass techniques

as exemplified in networking libraries such as DPDK [108] and storage libraries such as



SPDK [101] are a form of library OS. By avoiding kernel code in performance-critical data

paths, they reduce the overhead of the kernel code and also the need to switch privilege

modes and thereby improve performance. Traditionally, kernel-bypass techniques have in-

troduced their own custom APIs and no standardized APIs (like POSIX extensions) exist.

Thus, applications must be significantly modified to use them, which usually requires massive

engineering efforts.

Unikernels, a relatively new OS model [68], can be viewed as a specialized form of library OSs.

A unikernel instance includes a single application that is statically compiled together with

the necessary kernel components and executes in a single address space. Since traditional

system calls are replaced with regular function calls [27, 81], mode switch overheads [100] are

avoided, improving performance. Since each unikernel instance houses a single application,

the resulting code base and the attack surface are significantly smaller than monolithic OSs,

improving security. Unikernels are usually executed in a virtualized environment, atop a

hypervisor, which provides strong isolation – usually leveraging hardware virtualization –

between different unikernel instances, further improving security. Given these benefits, they

have recently gained traction in a number of domains including cloud/edge computing [15,

54, 55, 70, 99], server applications [55, 68, 69, 99, 120], NFV [28, 68, 70, 71], IoT [28, 33],

HPC [59], VM introspection and malware analysis [118], and regular desktop applications [85,

109].

1.1 Intra-Unikernel Isolation

Although the isolation between unikernels is generally recognized as strong due to virtual-

ization, there is no isolation within a unikernel. This is due to the use of a single unprotected

address space, as the model eliminates the traditional separation between kernel and user

parts of the address space. Thus, the entire unikernel must be viewed as a single unit of trust,



reducing security: subversion of a kernel or application component will result in the sub-

version of the entire unikernel with serious consequences, such as arbitrary code execution,

critical data leaks or tampering, among others.

We argue that the current level of isolation provided by unikernels is too coarse-grained

for many scenarios. First, a single application may be composed of mutually untrusting

components [8, 111], e.g., if they came from different sources with variable security coding

standards. Second, although some library OSs are written in memory-safe languages [21,

60, 68, 115], they generally rely on untrusted components for low-level operations by using

a traditional unsafe language [21, 68, 115] or by using unsafe code blocks in languages such

as Rust. Some unikernel library OSs are written entirely in an unsafe language [49, 51, 59].

Third, in scenarios where mutually untrusting components belonging to the same application

need to be isolated [8, 41, 111], a computing base that is trusted from the tenant’s point

of view – as in a cloud setting – has to be established to enforce that isolation. In the

current state of the unikernel model, this trusted computing base (TCB) cannot be the

guest OS kernel as it is not itself isolated from the application. This implies falling back to

the hypervisor as the TCB, which is suboptimal from a performance standpoint.

Several isolation mechanisms have been studied in the past to isolate an application’s un-

trusted components. These mechanisms operate at various levels of abstraction: a) using

hardware-assisted virtualization [11, 53], b) running components in different processes or us-

ing different page tables [8, 58], and c) using ISA extensions that support a trusted execution

environment such as Intel SGX [7, 16]. None of these mechanisms can easily be applied to

unikernels without breaking the single address space model, which would not only negate

unikernels’ performance benefits but also introduce additional, non-negligible performance

overheads in the form of mode switching costs [111].

In this dissertation, we address the aforementioned security issues of unikernels by provid-



ing intra-unikernel isolation while retaining their single address space feature. We leverage

hardware primitives that are available in commodity processors to do this. Specifically, we

use Intel’s Memory Protection Keys (or MPK) [23] primitive, which provides per-thread

permission control over groups of virtual memory pages in a single address space. MPK has

negligible performance overheads [82, 111], which makes it a compelling candidate for use in

unikernels.

We identify the different areas of a unikernel’s address space, i.e., the kernel’s safe/unsafe

memory regions (static data section, stack, and heap), and the user memory regions (static

data section, stack, and heap). These areas are isolated from each other by using MPK-

based mechanisms to enforce per-thread permissions on each memory area. In designing the

isolation mechanisms, our design principles are: (1) they should preserve a single address

space; (2) they should isolate the various areas of the address space; and (3) they must have

negligible performance overheads.

We demonstrate our mechanisms in RustyHermit [60], a unikernel written in Rust. We

use easy-to-use code annotations for identifying intra-unikernel components that require

isolation. Such annotations can be made by the unikernel library OS programmer. We

design and implement two isolation policies. First, we isolate safe Rust kernel code from

unsafe Rust kernel code to limit the possibilities for an attacker to exploit a vulnerability

in the unsafe kernel code. Thus, trusted kernel components are protected from attacks that

leverage vulnerabilities in untrusted ones. Second, we re-introduce kernel and user space

separation in unikernels by isolating kernel code from user code. This protects kernel space

from unauthorized access by subverted user code. Additionally, it enables implementation

of isolation techniques that isolate application components from each other, which should

be enforced by the kernel. Our isolation techniques have low overhead. In particular, they

retain unikernels’ low system call latency feature.



1.2 Storage Server in Multiserver-Library OS

No single OS model is ideal for all use cases. As previously discussed, monolithic OSs tradeoff

isolation (and thereby potentially reduced security and reliability) for high performance.

Microkernels and multiserver OSs tradeoff performance for high isolation. Library OSs and

kernel-bypass techniques tradeoff programmability (usually POSIX) for high performance.

Multiple OS models coexisting in the same OS have a value proposition: each model’s

advantage can be exploited, allowing “best of several worlds”. In addition, applications can

switch between different OS models, at run-time, for more effective resource utilization.

This is particularly significant when using limited resources – e.g., modern 10 GbE Ethernet

NICs [47] often have limited SR-IOV interfaces [83]. Thus, at low I/O loads, a multiserver

OS model for device access can be performant; when I/O load increases, however, the library

OS model may become necessary for high performance and can be dynamically switched to.

Motivated by these considerations, we introduced LibrettOS [79], the first OS design that

supports multiserver and library OS models in the same OS, and the ability to switch be-

tween the two models at run-time. LibrettOS’s default mode is the multiserver OS mode.

Applications that require strong isolation for better security and reliability can leverage Li-

brettOS’s servers that implement OS subsystems. For selected applications that require high

performance, LibrettOS’s direct mode acts as a library OS and allows applications to directly

access hardware resources. In addition, OS subsystem code, such as that of device drivers,

network stacks, and file systems remain identical in the two modes, enabling applications

to interface with them using the same set of APIs, in fact, POSIX APIs, enabling dynamic

mode switching with significantly reduced development and maintenance costs.

LibrettOS is built using the rumprun unikernel [102], which is based on NetBSD 9.0 [74]’s

code base, was introduced by Antti Kantee [48], and upstreamed into mainline NetBSD [73].



This allows us to reuse existent, hardened NetBSD device drivers with little engineering

effort. In addition, LibrettOS supports standardized high-level APIs, e.g., POSIX, which

allows a large ecosystem of POSIX/BSD-compatible applications to be ported without any

modification.

LibrettOS [79] was demonstrated using a network server implementation, and used Xen [50]

as the underlying hypervisor in HVM mode [116] for server isolation. The network server

leverages NetBSD’s 10GbE driver code along with a small glue code. Experimental evalu-

ations [79] using applications including Nginx, NFS, memcached, Redis, and others demon-

strated LibrettOS’s superior performance over the original rumprun and NetBSD, especially

in the direct mode. In some tests, LibrettOS also outperformed Linux, which is often better

optimized for performance than NetBSD.

Along with the network server, the storage server, which LibrettOS lacked, is one of the

basic and essential system servers in multiserver OSs. A storage server’s basic functionality

includes transferring inbound and outbound block I/O between applications and the storage

device. In the multiserver OS model, such an isolation enhances security.

This dissertation presents the design and implementation of a storage server in LibrettOS.

We design the storage server using the rumprun unikernel and by breaking-down functions

of the block layer and by reusing the storage device driver (e.g., NVMe driver [75]) from the

NetBSD kernel. The storage server adopts the paravirtualized driver [117]. The frontend

driver is linked as a library in the application’s address space so that the application can

communicate with the storage server. On the storage server-side, the backend driver is

linked as a library along with other device drivers such as the NVMe driver. The frontend

and backend drivers communicate through an IPC. We also implement an efficient IPC

between the storage server and applications by leveraging lock-free ring buffers [77].



1.3 Summary of Research Contributions

In summary, this dissertation presents two techniques for improving OS security through

enhanced isolation:

1. Intra-Unikernel Isolation with Intel MPK. A single address space is unikernel OS’s

fundamental design principle for high performance and enhanced isolation. Paradox-

ically, this can reduce security: since unsafe kernel code and safe kernel code are not

separated, and user code and kernel code are not separated, security vulnerabilities

in unsafe kernel code or user code can be exploited to compromise kernel code. We

present a technique to achieve intra-unikernel isolation that prevents such exploits by

leveraging Intel’s MPK hardware primitive. We leverage language macro features to

provide unikernel library OS developers with a convenient way to annotate code for

isolation. Our implementation in the RustyHermit unikernel and evaluations reveal

that the technique achieves isolation with very low performance overhead: 0.6% slow-

down on applications including memory/compute intensive benchmarks (NPB [94],

PARSEC [13], Phoenix [91]) as well as micro-benchmarks.

2. Design and Implementation of Storage Server in LibrettOS. LibrettOS is an OS design

that supports multiserver and library OS models in the same OS, allowing each model’s

advantage (i.e., high isolation, high performance) to be exploited, and the ability to

dynamically switch between the two OS models at run-time for more effective resource

utilization, using the same set of (POSIX) APIs. LibrettOS lacks a storage server, an

essential system server in multiserver OSs. We present the design and implementation

of a storage server in LibrettOS that enhances isolation between applications and the

storage device, thereby allowing localization of security vulnerabilities. We build the

storage server using the rumprun unikernel, which allows us to leverage NetBSD’s



NVMe driver with little engineering effort. To minimize performance degradation due

to IPC, we leverage lock-free ring buffers and design an efficient IPC mechanism.

Our evaluations using applications including the NFS server and Sysbench benchmark

reveal that the storage server outperforms Linux in certain cases and achieves reason-

able performance compared with rumprun and Linux in other cases.

1.4 Summary of Proposed Post-Preliminary Exam Work

We propose the following directions for post-preliminary examination work:

• In the multiserver OS model, better isolation can not only improve security, but can

also help tolerate component failures, increasing reliability. LibrettOS’s storage server

currently cannot transparently tolerate server failures. While simple reboots are a sat-

isfactory solution for transparently tolerating network server failures, and was demon-

strated in [79], they are not acceptable in the storage context. This is because storage

is internally stateful: I/O requests that are in-flight when server crashes must be care-

fully handled so that no errors manifest in applications when the server is rebooted. In

contrast, when a network server is rebooted, TCP/IP automatically resets the network

connection and retransmits packets. We therefore propose to enhance LibrettOS’s cur-

rent storage server with a transparent fault-recovery mechanism.

• Similar to the storage server, a file system server can enhance isolation and thereby

security and reliability in the multiserver OS model. A file system server’s basic func-

tionality includes transferring inbound and outbound file I/O between applications and

a file system. We propose to design and implement a file system server for LibrettOS.

Similar to the storage server’s proposed fault-recovery mechanism, we also propose a

mechanism for the file system server that can transparently tolerate server failures.



• The dissertation’s intra-unikernel isolation mechanism can be further enhanced to

achieve isolation at finer granularities. A case in point is isolation of the user library. A

vulnerability in a user-facing HTTP parsing module (e.g., NGINX’s CVE2013-2028 [2])

can leak sensitive data of the cryptographic library (e.g., crpyto keys). Thus, isolat-

ing a unikernel’s user library code from a user application code can prevent leakage

of sensitive data against a malicious client. We propose to design such fine-grained

intra-unikernel isolation mechanisms.

• Besides network, storage, and file system servers, device servers such as that for USB,

sound, and console can be designed for LibrettOS, further enhancing isolation. Modern

hardware is equipped with a controller that has sufficient computational power to run

a device server. The device servers can run on the hardware’s controller such that they

provide strong isolation of the device drivers. We propose to design and implement

such device servers for LibrettOS.

1.5 Dissertation Organization

The rest of the dissertation is structured as follows:

Chapter 2 presents the necessary background of the dissertation. Chapter 3 reviews past

and related works.

Chapters 4 and 5 present the design and implementation of the intra-unikernel isolation

technique, respectively. Chapters 6 and 7 evaluate the security and performance of the

intra-unikernel isolation technique, respectively.

Chapters 8 and 9 present the design and implementation of LibrettOS’s storage server,

respectively. Chapter 10 evaluates the storage server.

Finally, Chapter 11 concludes and proposes post-preliminary exam work.



Chapter 2

Background

In this chapter, we provide background information required to understand the rest of the

dissertation. We first describe some background information about Unikernel and RustyHer-

mit [60] that we work with in this dissertation, Rust [90] that is the programming language

used to write RustyHermit, and the Intel MPK [23] technology that we use to provide iso-

lation. We also provide background knowledge for the storage server. This includes Xen

hypervisor, rumprun unikernel, and LibrettOS [79].

In this chapter, Section 2.1 discusses about unikernel. Section 2.2 introduces RustyHermit-

core. Section 2.3 presents Rust programming language. Section 2.4 explains Intel Memory

Protection Keys. Section 2.5 describes rumprun unikernel. Section 2.6 covers Xen hypervi-

sor. Lastly, Section 2.7 explores LibrettOS.

2.1 Unikernel

A unikernel [68] consists of a single application compiled and statically linked with a minimal

kernel LibOS. Unikernels are single purpose, i.e. one instance corresponds to one guest VM

running a single application on top of a hypervisor. A unikernel instance also presents a

single and unprotected address space shared between the kernel and the application. All the

code executes with the highest privilege level (for example, ring 0 in x86-64) and thus there

is no memory protection between kernel and user code/data in that address space.
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Such a model brings significant benefits in several domains [81], in particular in terms of

performance [51, 59, 81]: due to the elimination of kernel/user separation, system calls can

be replaced with regular function calls. This significantly reduces system call latency, as

there is no longer a costly world switch between privilege levels [59]; expensive operations

such as page table switching [81] are eliminated. As a result, unikernels have been shown to

outperform traditional OSs in system-intensive workloads [27].

However, the lack of isolation within a unikernel (intra-unikernel isolation) raises serious

security concerns. Even if it executes a unique application, viewing a unikernel instance as a

single and atomic unit of trust is too coarse-grained in current scenarios: a vulnerability in

a relatively untrusted/vulnerable application component automatically leads to the attacker

taking over the entire system. In a unikernel, this concern also includes kernel components, as

there is no isolation between kernel and user space. We divide intra-unikernel isolation issues

into two categories: (1) the lack of isolation between kernel and user space and (2) the lack

of isolation between trusted and untrusted kernel components in memory-safe unikernels.

Lack of Isolation between Kernel and User Space. Modern applications are made

of components (such as libraries) having variable degrees of trustworthiness/potential for

vulnerabilities, manipulating data with various levels of sensitivity [8]. Without isolation

between these, taking over a vulnerable component gives the attacker control over the entire

application, including the sensitive data belonging to other components. Consider, for exam-

ple, a formally verified cryptographic library [121] and a user-facing HTTP parsing module.

The former is unlikely to contain vulnerabilities, but the sensitive data it manipulates (crypto

keys) could be leaked through a vulnerability in the latter (such as CVE-2013-2028 in Nginx)

when they run in the same application. Another example is an image manipulation library

overwriting sensitive function pointers in the Global Offset Table [8]. To provide more secu-

rity in these scenarios, intra-application solutions have been proposed [8, 41, 111]. They rely



on a trusted entity to enforce an isolation policy. Due to the lack of user/kernel separation

in unikernels, that entity cannot be the guest kernel as the application code can freely access

kernel memory. Although the hypervisor could play that role, it would be sub-optimal from a

performance point of view (more VMEXITs). It would also lead to an increase in the trusted

computing base (hypervisor), which is a security concern. In conclusion, to support isolation

of components within applications, it is necessary to bring back user/kernel separation in

unikernels.

Lack of Isolation between Trusted and Untrusted Kernel Components. Several

unikernels’ OS layers are written in memory-safe languages [21, 60, 68, 115]. This of-

fers strong security guarantees compared to unikernels written in unsafe languages such

C/C++ [49, 51, 59, 81]. However, even memory-safe unikernels rely on untrusted compo-

nents to realize the low-level operations that are unavoidable in an OS context: the use of

inline assembly and the need to dereference raw pointers. This is realized either with an

unsafe language for those components [21, 68, 115] or with the use of unsafe code blocks [60]

in a language such as Rust. Once again, without intra-unikernel isolation, a vulnerability in

an unsafe kernel component leads to the subversion of the entire system, in effect negating

the benefits of using a memory-safe language.

In the rest of this dissertation, we focus on RustyHermit [60], a unikernel which is written in

Rust, although our design could easily be adapted to other unikernels that use C for low-level

operations. One of the main reasons we chose RustyHermit for our implementation is the

fact that, contrary to other memory-safe unikernels, it does not restrict the application code

to the same language as the LibOS (such as OCaml for MirageOS, Erlang for LING, and

Haskell for HaLVM), which is a significant compatibility advantage.

Listing 1 shows an unsafe code snippet extracted from RustyHermit’s source code. These



impl<T> PerCoreVariableMethods<T> {
#[inline]
default unsafe fn get(&self) -> T {

let value: T;
asm!("movq %gs:($1), $0"

: "=r"(value) : "r"(self.offset())
:: "volatile");

return value;
}
#[inline]
default unsafe fn set(&self, value: T) {

asm!("movq $0, %gs:($1)"
:: "r"(value), "r"(self.offset())
:: "volatile");

}
}

Listing 1: Per-core variable get/set methods.

functions manage per-core variables using the GS x86-64 segment register, plus a relative

offset depending on the variable. Examples of per-core variables are the CPUID, scheduling

data structures, and task state segments. Practical addressing relative to the GS register can

only be done using inline assembly, i.e. it should be placed within an unsafe code block. If we

assume that, through a bug, the attacker has control over the self parameter, then the set

function can be used to perform arbitrary memory writes (note that self.offset() returns

a value deterministically computed from the value of self). Similarly, if we additionally

assume that the attacker can exploit a bug to return the value of the get function, then it

becomes an arbitrary memory read.

To conclude, in addition to kernel/user separation, there is also the need to bring isola-

tion between safe and unsafe kernel components into memory-safe unikernels. Furthermore,

neither type of isolation should come at the cost of degraded performance, nor should they

negate the performance benefits of unikernels such as fast system calls, fast context switches,



and the like.

2.2 RustyHermit

The unikernel RustyHermit is completely written in Rust and does not depend on any C

code. One of Rust’s major advantages for kernel developers is that it splits the runtime

into an operating-system-independent library and an operating-system-dependent library.

By implementing Rust’s global memory allocator, the alloc library, multiple data structures

become available and usable in kernel space. These include smart pointers as well as basic

data structures like linked lists, binary heaps, ring buffers, and maps. Only a target spec-

ification file that specifies processor type, pointer width, etc. is required to compile these

libraries. Consequently, kernel developers can reuse existing, well-tested code from the Rust

community, which simplifies development and increases the robustness of the kernel.

Additionally, RustyHermit is a full 64-bit kernel, supporting x86-64 processors, SIMD in-

structions like AVX, thread-local storage, and symmetric multiprocessing. RustyHermit is

completely integrated into the Rust compiler infrastructure. One part of the Rust infrastruc-

ture is Cargo, which is Rust’s package manager and coordinates the build process of Rust

binaries. The main difference from the typical C/C++ build process is that the package

manager does not install binaries, headers, static or shared libraries. It instead downloads

the source code, compiles it with the same compiler flags, and links it directly to the exe-

cutable. The Rust community calls such packages crates. By fully integrating RustyHermit

into the Rust toolchain, cargo can be used to define the dependencies for the application. In

principle, every published crate in a repository (e.g., crate.io) can be used to build executa-

bles based on the library operating system. The only requirement is that the crate must not

directly call the host OS and bypass Rust’s standard runtime.

Besides the support for pure Rust binaries, it is also possible to develop C/C++ applications

https://crate.io


on top of the Rust kernel. For this purpose, the C library newlib [76] is used to create the

interface between C/C++ applications and the kernel.

In addition, RustyHermit comes with the lightweight hypervisor uhyve, which is also com-

pletely written in Rust and uses KVM to accelerate the virtualization. RustyHermit can

delegate operating system services like file system access to the host system by hypercalls.

The technique is outlined in [81]. RustyHermit is composed of about 20k LoC, including

650 lines of unsafe code [60]. We implemented our intra-unikernel isolation technique in a

RustyHermit unikernel running on uhyve hypervisor.

2.3 Rust

Rust is attracting attention as a system programming language because of the memory

safety guarantees provided by its compiler. Furthermore, the absence of a garbage collector

allows Rust to avoid much runtime overheads[29]. Instead of collecting unused memory in

the runtime, Rust is designed to rely on comprehensive safety checking at compilation time;

there are also runtime safety checks when the compile-time checks are not sufficient [60].

The concept of ownership ensures that all objects are safely handled with minimal runtime

overhead. Thanks to Rust’s memory safety and high performance, operating systems like

RustyHermit [60], Theseus [14], TockOS [63] and Redox [32] were written in Rust.

Rust prohibits dereferencing raw pointers for memory safety. It is, however, inevitable for

the kernel to access unchecked raw pointers, such as when accessing the page table. In some

cases, the kernel has to call assembly, such as when executing start-up code directly. To

support those cases, Rust also provides an unsafe code region that is not checked by the

Rust compiler or runtime. As Rust’s memory safety is not guaranteed in the unsafe block

by the compiler, developers have to write vulnerability-free codes by themselves.



2.4 Intel Memory Protection Keys (MPK)

Intel Memory Protection Keys is a new hardware feature providing per-thread permission

control over groups of pages without requiring modification of page tables at a small per-

formance cost. Four previously unused bits of each page table entry (the 62nd to the 59th

on x86-64) are exploited by MPK [23, 82]. Since MPK exploits four bits of the page table

entry, it supports up to 15 protection keys (we opted to reserve key 0).

1 1 0 0 0 1 0 0…
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0 R/W

1 RO

… R/W

14 R/W

15 N/A

0 1 1 1 0 0 0 0…PKRU (Core B)
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… R/W
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15 RO
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Figure 2.1: Illustration of Intel’s Memory Protection Key (MPK) feature.

MPK controls per-thread permission on groups of pages with the notation (WD, AD), where

WD is Write Disable and AD is Access Disable. The possible states are are read/write (0,0),

read-only (1,0), or no-access (x,1). Each core has a PKRU register (32 bits) containing

a permission value. The value of the PKRU register defines the permission of the thread

currently running on that core for each group of pages containing a protection key in their

page table entries. Figure 2.1 illustrates MPK’s operation. A thread running on a core A

has the no-access permission on the pages of group 15 and read-write on those of group 14.

On the other hand, a thread running on core B can not access the pages of group 14 and



can only read the pages of group 15.

Unlike page-table-level permission, MPK provides thread-local memory permission. Fur-

thermore, the cost of switching the PKRU value is quasi-negligible [111]. We believe MPK

is most suitable for providing isolation within a unikernel without harming the principle of

unikernels.

2.5 Rumprun

Rumprun is a unikernelized implementation of rump kernel [49] whose code is based on

NetBSD’s kernel code. Even though NetBSD is a well-known monolithic OS, the rump

kernel is designed to be modular such that NetBSD’s device drivers can be factored out.

Additional rumprun layer enables the rump kernel to run as a unikernel on Xen hypervisor,

KVM, or a bare-metal machine. The major reason that we opted to use rumprun unikernel

is that it can leverage a wide range of NetBSD’s device drivers maintained by the NetBSD

community. Our storage server is implemented on a rumprun unikernel running on Xen

hypervisor. As a result, it relies on Xen hypervisor’s subsystems such as grant references

and event channels. In addition, rumprun can run as either of PV (Paravirtualization)

domain or HVM (Hardware Virtualization Mode) domain on Xen. We build our storage

server on rumprun HVM mode.

2.6 Xen Hypervisor

Xen hypervisor [50] is a type-1 hypervisor first introduced and developed by the Computer

Laboratory at the University of Cambridge. Xen hypervisor firstly brought paravirtualiza-

tion which requires guest operating systems modified to run on Xen but achieves better

performance, unlike the full virtualization. Domain means a guest machine in Xen term.

Xen hypervisor has a privileged domain called Dom0 which is running Linux, NetBSD, or



other well-known operating systems. The responsibility of Dom0 is running management

tool stacks and device drivers such that Dom0 must run first when Xen boots and Xen is

unusable without Dom0.

Guest domains (DomU) besides Dom0 have paravirtualized device drivers (PV drivers).

The PV drivers consist of backend driver running in Dom0 and frontend driver running in

DomU. The backend and frontend driver communicates to each other through ring buffers

maintained by Xen. By leveraging Dom0’s device drivers, the PV driver can exploit a wide

range of devices that are not supported by Xen.

Xen supports HVM domain which is Hardware Virtualization Mode, or hardware-assisted

virtualization. Unlike paravirtualized domain, HVM domain does not require guest operat-

ing systems to be modified. However, Xen HVM mode requires hardware support by the

host CPU such as Intel VT-x and AMD AMD-V. HVM mode is known for naturally pro-

tection from the Meltdown vulnerability [67] because Meltdown is ineffective in a complete

virtualization environment.

2.7 LibrettOS

LibrettOS [79] is a new OS design first introducing a fusion of multiserver OS and LibOS.

The default mode of LibrettOS is multiserver OS running system services in an isolated

manner. A network server is introduced as an example of system servers. It is built on

a rumprun unikernel and contains the NetBSD’s latest 10GbE NIC driver. The network

server drives the NIC hardware to forward incoming and outgoing network packets to target

applications. Therefore, applications can share the NIC hardware which is a limited resource.

The multiserver OS mode brings isolation to the networking system such that any fault and

security vulnerability potentially existed in the code can be isolated. For example, a deadlock

that occurred in the network stack can be resolved by restarting the network server. Unlike



monolithic OSs, faults in system components do not affect the entire system.

For selected applications, LibrettOS also acts as a LibOS. When an application requires the

better performance, it is granted exclusive access to hardware resources such as networking

and storage. This can be feasible because the LibOS mode allows the application to contain

the device driver code as a library in its address space.

Figure 2.2: Design of LibrettOS.

Furthermore, LibrettOS has the ability to switch dynamically between two modes: appli-

cations can switch between multiserver OS and LibOS mode during the runtime with no

interruption. In addition, LibrettOS can solve one of the critical limitations of LibOSs,

which is limited driver support. As LibrettOS is based on rumprun unikernel, it can lever-

age NetBSD’s device drivers.

LibrettOS is the first operating systems that can simultaneously address issues of isolation,

performance, and recoverability while still using the existing NetBSD drivers and software.

LibrettOS’ design has a unique advantage in that, the two paradigms seamlessly coexist in

the same OS, enabling end-users to simultaneously exploit their respective strengths (e.g.,

greater isolation, high performance).



Fig. 2.2 shows the design of LibrettOS, and the figure is reproduced here from [79] under

fair use and is shown for completeness.



Chapter 3

Related Works

Researchers have proposed isolation on the various components of systems such as user/k-

ernel, trusted/untrusted within kernel code or application code, and system component

compartmentalization. Moreover, they have attempted to find a new way to impose isola-

tion by using the software-based solution, leveraging new hardware features, or both. In this

chapter, we discuss some related works about improving security with enhanced isolation.

3.1 presents unikernels which is used by this dissertation. Next, 3.2 discusses about software

component isolation. Finally, 3.3 introduces various OS designs providing isolation of system

components.

3.1 Unikernels

Since their invention in 2013 [68], unikernels have grown in popularity in academia. These

single-purpose, minimal VMs offer benefits in addition to the already mentioned performance

gains. They are lightweight [97], offering subsecond boot time and very low disk/memory

footprints. This is due to the simplicity of unikernel LibOSs and the fact that in a unikernel

instance, the kernel embeds only what is needed for the application it runs. Lower footprints

translate into cost reductions for the cloud tenant and superior consolidation (increased rev-

enue) for the provider. Fast boot times make unikernels good candidates for scale-out/elastic

deployments [80]. The potential application domains for unikernels are plentiful, as listed in

Chapter 1.
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The isolation between unikernel instances running on a host is strong as they are virtual

machines, and they are considered superior to containers [70] in that regard. However, in

this dissertation, we show that the lack of intra-unikernel isolation is a security issue and

addressed that concern. To our knowledge, we are the first to propose an intra-unikernel

isolation system.

The performance benefits of unikernels come at least partially from the sharing of a sin-

gle and unprotected address space [51, 59, 81]. That concept was originally pioneered by

single-address-space OSs that appeared in the 90s following the appearance of 64-bit virtual

addressing, such as Opal [18] or Nemesis [62]. We demonstrated that using a lightweight

isolation mechanism such as MPK can bring security benefits while keeping a low latency

for system calls.

Although some unikernels such as Rumprun [49], OSv [51], and HermitCore/HermiTux [59,

81] are entirely written in unsafe languages (C/C++), others use memory-safe languages.

These include MirageOS [68] written in OCaml, LING [21] in Erlang, HaLVM [115] in Haskell,

and RustyHermit [60] in Rust. However, even those rely on memory unsafe languages or

unsafe code blocks to implement the low-level operations that an OS needs to support.

Using our isolation scheme, we show that the safe part of the kernel can be isolated from

the unsafe regions.

3.2 Software Component Isolation

Beyond the traditional user/kernel split, the decomposition of software into trusted and

untrusted components have been studied in several past works, at the application [8, 58, 111]

and OS [106, 109, 110, 114] levels. LibOSs such as Graphene [109, 110] adopt the Exokernel

OS model and bring as many kernel components as possible in user space, reducing the size

of the interface with the kernel for more isolation. In VPFS [114], the file system service



is split between two isolated components, a small and trusted computing base performing

security-critical operations and an untrusted code base reusing most of the code of an existing

legacy file system. In Proxos [106], the system call interface is partitioned into trusted and

untrusted operations. Configuration rules allow routing the application’s system calls either

to a trusted microkernel or to an untrusted commodity OS. Occlum [96] runs a LibOS within

an Intel SGX enclave and offers isolation for multiple tasks inside that enclave by leveraging

Intel MPX [24] (deprecated in recent Intel CPUs).

Among the fine-grained isolation works focusing on the application level [8, 58, 111], Sand-

Crust is relatively close to our work. It isolates safe from unsafe Rust code by running unsafe

code in a separate process, which is not doable in a unikernel without breaking the single

address space principle. To our knowledge, we are the first to apply fine-grained isolation

to unikernels. Due to the peculiarities of this OS model, we face specific challenges such, as

the need to keep a single address space to preserve a low system call latency and the need

to reintroduce user/kernel space isolation.

3.3 OS Designs Providing Isolation

Microkernel model [5, 30, 39, 42, 45, 46, 65] provide isolation of system software components

in separate address spaces and it is the key principle of the microkernel model. Micro-

kernels [37, 43, 52] introduce stronger security and reliability guarantees by placing only

essential system components (scheduling, memory management, IPC) in the kernel whereas

the traditional monolithic OS design has all the system components in a single kernel. L4 [65]

is a family of microkernels, which is known to be used for various purposes and a notable

member of this family is seL4 [52], a formally verified microkernel. Multiserver OSs are a

specialization of microkernels where OS components (e.g., network and storage stacks, de-

vice drivers) run in separate user processes known as servers. MINIX 3 [42], GNU Hurd [17],



Mach-US [104], and SawMill [36] are examples of multiserver OSs.

For various layers of the system software in a virtualized environment, such as hypervi-

sor [98], management toolstack [22], and guest kernel [78], decomposition and isolation have

proven beneficial. Security and reliability are particularly important in virtualized environ-

ments because they have multi-tenancy characteristics and the reliance on cloud computing

has been growing for today’s workloads. In the desktop domain, Qubes OS [92] leverages

Xen to run applications in separate VMs and provides strong isolation for local desktop en-

vironments. Other microkernels [52, 103, 112] with a potentially small code base can benefit

by imposing virtualization as well.

The storage server of LibrettOS’ multiserver mode obtains the security and reliability benefits

of microkernels by decoupling the application from system components such as drivers that

are particularly prone to faults [38, 44] and vulnerabilities [19].

IX [12] and Arrakis [84] bypass traditional OS layers to improve network performance com-

pared to commodity OSs. IX introduces its custom API and leverages the DPDK library [108]

to directly access NICs. On the other hand, Arrakis supports POSIX and it is built on top

of the Barrelfish OS [9], but its device driver support is limited.

Researchers tried to employ certain aspects of the multiserver design using existing mono-

lithic OSs. For example, VirtuOS [78] employ a fault-tolerant multiserver design by lever-

aging virtualization to strongly isolate the Linux kernel components. They run storage and

networking servers as service domains on top of Xen. Snap [72] implements a network server

in Linux to improve performance and simplify system upgrades. Snap uses its own (non-

TCP) protocol and cannot be easily integrated into existent applications. Therefore, all

network device drivers are required to be re-implemented.

Researchers have also proposed the sidecore approach [35, 56] for I/O optimization in VMs.



This approach is to avoid VM exits and offload the I/O work to sidecores. Kuperman et

al. [57] proposed to consolidate sidecores from different machines onto a single server, because

this approach is wasteful when I/O activity reduces.

Exokernel [34] first proposed LibOS that is to make OS components as libraries and link them

to applications. Nemesis [62] implemented a LibOS with an extremely lightweight kernel.

Drawbridge [85], Graphene [109], and Graphene-SGX [110] adopt the LibOS model such that

they benefit the security benefits of LibOS. Bascule [10] demonstrated OS-independent ex-

tensions for LibOSs. EbbRT [93] proposed a framework for building per-application LibOSs

for performance.



Chapter 4

Design of Intra-Unikernel Isolation

Technique

This chapter goes through the design of our intra-unikernel isolation technique. We follow

the design objectives: (1) preservation of a single address space, (2) isolation of various

memory areas, and (3) negligible cost.

In this chapter, Section 4.1 discusses about assumptions and thread model. Section 4.2

introduces data considered to isolate. Section 4.3 presents isolation with MPK. Section 4.4

explains unsafe kernel isolation. Lastly, Section 4.5 describes user application isolation.

4.1 Assumptions and Threat Model

We define a unikernel application to be a collection of software components, i.e. pieces of

code. These are compiled and linked together to form a unikernel binary, executed at runtime

on top of a hypervisor in a VM representing a unikernel instance. The software components

can either be trusted or untrusted. We assume no vulnerability in trusted components, which

in practice denotes the use of a memory-safe language or verification techniques for these

components. We assume that untrusted components can contain memory vulnerabilities

such as buffer overflows, which can be exploited by an attacker aiming at hijacking the

unikernel’s control flow, leaking or tampering with sensitive data, etc.
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We assume a unikernel model in which the LibOS is mainly implemented in a memory-

safe language, examples of which include MirageOS [68], RustyHermit [60], LING [21], as

well as HaLVM [115]. A unikernel is composed of application and kernel code. In this

dissertation we aim to provide user/kernel separation so we simply see the entire application

as an untrusted component, independently of application-specific characteristics such as the

language it is written in or the level of skill of the application’s programmer. In addition, we

divide the kernel code into trusted and untrusted components. Trusted kernel components

represent pieces of code written with a memory-safe language, i.e., offering strong security

guarantees. Untrusted kernel components correspond to code written either in memory-

unsafe languages [21, 68, 115] or in unsafe Rust code blocks [60]. To summarize, a unikernel

is composed of (1) untrusted application code, (2) untrusted kernel components, and (3)

trusted kernel components.

We assume that there is no vulnerability in the trusted kernel code, as memory safety is also

guaranteed by Rust compiler. We trust the hardware to behave correctly and assume that

there are no side channels.

4.2 Data Considered to Isolate

We have a general security principle: untrusted code should access only what it needs to

operate correctly. Listing 2 shows an example of unsafe kernel code in RustyHermit. The

function write_byte in kmsg_write_byte stores the input byte on the KMSG buffer. As

write_byte writes the input at the destination decided by a raw pointer, it should be called

in an unsafe code block. In this example, write_byte accesses the KMSG buffer through the

local variable buffer. Therefore, the call to write_byte, the buffer KMSG, and the variable

buffer should all be isolated.

Kernel code is comprised of safe components and unsafe components. Isolating unsafe ker-



static mut KMSG: KmsgSection = KmsgSection {
buffer: [0; KMSG_SIZE + 1],

};

pub fn kmsg_write_byte(byte: u8) {
let index = BUFFER_INDEX.fetch_add(1, SeqCst);
unsafe {

let buffer = &mut KMSG.buffer[index % KMSG_SIZE];
write_byte(buffer, byte);

}
}

Listing 2: Example of unsafe kernel code.

nel functions and variables requires separate .data/.bss sections for static data, stacks for

function calls, and heaps for dynamic memory allocation. Thus, we create an isolated data

section, isolated stack, and isolated heap for the unsafe components. For the user/kernel

isolation, we isolate all the sections of user memory by creating another isolated .data/.bss

section, isolated stack, and isolated heap for the user application.

.
text

.
data

.
bss

…
user 
heap

user
stack

kernel
heap growth

stack growth

.safe
data

safe 
heap

safe 
stack

.isolated 
data

isolated
heap

isolated
stack

User Memory
(pkey of USER)

Safe Kernel Memory
(pkey of SAFE)

Unsafe Kernel Memory
(pkey of UNSAFE)

Figure 4.1: Virtual address space layout for intra-unikernel isolation.

Figure 4.1 shows the virtual address space layout of safe sections for the safe kernel com-



ponents, isolated sections for the unsafe kernel components, and user sections for the user

application.

4.3 Isolation with MPK

We leverage Intel MPK for intra-unikernel isolation. As previously described, MPK provides

per-thread permissions for groups of pages according to their protection keys (pkeys). We

set a pkey of UNSAFE on pages of the isolated data section, stack, and heap. On the other

hand, pages for the safe kernel memory sections have a pkey of SAFE and pkey of USER for

the user memory.

unsafe { // pkey of SAFE is 1
pkey_safe_NO_ACCESS(); // MPK_WRPKRU(0b0...01100)
*ptr = some_data; // Raw pointer dereference
unsafe_function(ptr); // Unsafe function call
asm!("NOP"::::); // Inline Assembly
pkey_safe_READ_WRITE(); // MPK_WRPKRU(0b0...00000)

}

Listing 3: Example of isolating unsafe kernel code: raw pointer dereference, unsafe function
call, and inline assembly. MPK_WRPKRU writes a value of 32bit on PKRU register.

We switch the current thread’s permission for the pkey SAFE to “No Access” right before

calling an unsafe function. Right after the function returns, the permission is switched back

to “Read Write” to end the isolation. An example in Listing 3 shows that the permission

for the SAFE memory region is set to No Access before executing the unsafe kernel code

(raw pointer dereference, unsafe function call, and inline assembly) by setting a value of

0b0...01100 (SAFE pkey is 1: 2nd, 3rd bits are set to 1s for No Access) in the PKRU

register. After the function returns, the permission is set back to Read-Write by writing a

value of 0b0...00000 to the PKRU. Therefore, MPK prohibits the thread from accessing

the SAFE memory region (whose PTEs contain the pkey of SAFE) while executing the UNSAFE



function. If a thread executing untrusted code (unsafe kernel or user application code) tries

to access the safe memory region, a protection key page fault occurs and terminates process

execution.

4.4 Unsafe Kernel Isolation

Unsafe code blocks are containing unsafe function calls, raw pointer dereference operations,

and inline assembly in kernel code. Some of them need to access global variables or local

variables in the stack frame of their caller function. Therefore, we create separate sections for

static data isolation, a stack for unsafe function calls, and a heap for any dynamic memory

allocation required by the unsafe functions. Those isolated memory regions are protected

from the user application by MPK with the UNSAFE pkey.

Static Data Isolation. Unsafe functions in the kernel may need to access global variables.

We define global variables accessed by the unsafe kernel code as unsafe global variables. We

place the unsafe global variables into a separate memory section (.isolated_data section

in Figure 4.1). On the other hand, global variables that are only used by safe kernel code

should be located in the safe data section, which unsafe kernel code is not able to access. We

minimize the number of global variables in the unsafe data section by including only those

needed, so a compromised thread in the unsafe kernel code can only access a very limited

part of memory.

In the real kernel code, some global variables are needed by both safe and unsafe code.

We also put those shared global variables in the unsafe data section. As our objective is

to minimize the number of global variables accessed by the unsafe code, all the rest of the

global variables are protected by the unsafe code. Although having a separate .bss section

for uninitialized global variables is useful to reduce the size of binary, we keep the variables



in the data section to ease design complexity while still attaining the reasonably small size

of a unikernel.

Stack Isolation. An unsafe function should not share its function call stack frame with a

safe function. We create a separate stack isolated by MPK pkey for unsafe functions, shown

as .isolated_stack in Figure 4.1. When an unsafe function is called, we switch the value

of the stack pointer register (%rsp in x86-64) with the address of the isolated stack.

By default, an unsafe function is strictly isolated, so it is unable to access the safe stack

frames. In real kernel code, however, an unsafe function may try to access its caller’s stack

frames through local variables. If the caller is a safe function, the access should be managed

carefully. In this case, we only allow access to the shared stack frame between the safe caller

and the unsafe callee, meaning the unsafe callee function is still not able to access the rest

of the caller’s stack frames.

Heap Isolation. An isolated heap is required for unsafe code to allocate memory dynam-

ically. We create a separate heap (isolated heap in Figure 4.1) and a memory allocation

function (unsafe_allocate) for it. The unsafe_allocate function assigns available virtual

and physical addresses and maps them while writing the pkey of UNSAFE to the corresponding

page table entries. Consequently, a thread with inaccessible permissions for the safe mem-

ory region can still access the memory allocated by the unsafe_allocate function while

executing the unsafe code.

4.5 User Application Isolation

The entire user part of the address space is assumed to be untrusted. For that reason, we

separate the entire memory of the application from the kernel memory as the traditional

monolithic kernel model does. However, separation is done by MPK, for which the do-



main switch operation, a simple update of the PKRU value, is much faster than traditional

user/kernel separation methods involving costly world switch interrupts. Consequently, it

fundamentally follows the main principle of unikernels: a single address space.

As the entire user application is treated as a set of untrusted components, all the memory

sections are separated: .data/.bss, user stack, and user heap (Figure 4.1). A thread running

a user application code should not be able to access either kernel memory regions, safe or

unsafe. The border between user and kernel is quite distinct: a thread enters the kernel

when system calls are called and exits the kernel when the system calls return.

User application memory also comprises user static data (.data, .bss, etc.), user stack, and

user heap like those of the kernel. We can reuse most of the design choices used for safe/unsafe

kernel isolation.



Chapter 5

Implementation of Intra-Unikernel

Isolation Technique

We implement a prototype on top of RustyHermit to demonstrate our techniques. We can

leverage Rust’s features such as Rust Macros [88] to provide developers with a convenient

way to use our isolation mechanism on the existing kernel source code.

In this chapter, Section 5.1 discusses about protection keys and mpk permission. Section 5.2

introduces unsafe kernel isolation. Section 5.3 presents copy between safe/unsafe kernel code.

Section 5.4 explains user application isolation. Section 5.5 describes user bits on page table

entry and applicability.

5.1 Protection Keys and MPK Permission

Isolating safe/unsafe and kernel/user memory requires two MPK protection keys. The pro-

tection key of 1 is used for the safe kernel memory region permission, while 2 is used for the

unsafe kernel memory regions. As the user application is the most untrusted component, it

is not protected by any protection key.

Table 5.1 summarizes PKRU values that determine permissions for the groups of pages by

the protection keys. A thread running with a PKRU value of 0x00 is the most trusted entity

at that point. However, when the thread executes an unsafe kernel code block, its PKRU
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Table 5.1: PKRU values for memory regions: when a thread executes each code, PKRU is
set to the corresponding value. For example, before a thread executes the user code, PKRU
is set to contain 0x3C (No Access on both safe and unsafe kernel memory regions) such that
access to kernel memory by that thread is prohibited.

Memory Region Unused 26 bits (pkey 3 ∼15) UNSAFE (pkey 2) SAFE (pkey 1) Reserved (pkey 0) Hex Value
Kernel (safe) 0b00000000000000000000000000 00 00 00 0x00
Kernel (unsafe) 0b00000000000000000000000000 00 11 00 0xC
User 0b00000000000000000000000000 11 11 00 0x3C

is set to contain 0xC (0b0000_1100). This PKRU value prohibits the thread from accessing

the group of pages of pkey 1, which corresponds to the safe memory regions. In the same

way, 0x3C (0b0011_1100) in the PKRU register prevents the thread from accessing both safe

(pkey 1) and unsafe (pkey 2) kernel memory regions, providing the isolation of kernel from

user memory.

5.2 Unsafe Kernel Isolation

Rust unsafe code [89] provides additional features such as raw pointer dereferences, inline

assembly, Rust intrinsic functions, and unsafe function calls, as well as the use of static

mutable global variables. As the Rust compiler does not guarantee memory safety in the

unsafe code blocks, kernel developers should carefully use unsafe code at their own risk.

However, all unsafe code can contain potential memory vulnerabilities. Accessing a static

mutable global variable, for example, may expose a data race, but does not have memory

vulnerabilities.

Rust Macro. Rust macros provide a handy way of reusing multiple lines of code [58].

As explained in Sections 4.3, 4.4, and 4.5, there are several steps involved in safe/un-

safe and kernel/user isolation of global and local variables, and functions. All the pro-

cedures can be packed into an easy-to-use macro for better programmability. Listing 4



1 /********* Macro usage example *********/
2 unsafe_global_var!(
3 static mut KMSG: KmsgSection = KmsgSection {
4 buffer: [0; KMSG_SIZE + 1],
5 }
6 );
7

8 unsafe fn write_byte<T>(buffer: *mut T, byte: T) {
9 volatile_store(buffer, byte);

10 }
11

12 pub fn kmsg_write_byte(byte: u8) {
13 let index = BUFFER_INDEX.fetch_add(1, SeqCst);
14 unsafe {
15 let buffer = &mut KMSG.buffer[index % KMSG_SIZE];
16 isolate_function!(write_byte(buffer, byte));
17 }
18 }

Listing 4: Usage example of the macros in the kernel code.

provides an example of a macro that isolates an unsafe function introduced in Listing 2.

Macro isolated_function wraps the unsafe function call and expands to multiple steps

that isolate the function. For a global variable accessed by the unsafe function, macro

unsafe_global_var locates the global variable in the isolated data section.

Macro isolated_function wraps the unsafe function call and performs: (1) switching the

stack pointer to the isolated stack; (2) setting the MPK permission and writing it on PKRU

register; (3) calling the unsafe function; (4) restoring the MPK permission; (5) finally restor-

ing the stack pointer to the safe kernel stack. In addition, the unsafe function (write_byte)

accesses the global variable (KMSG), so the global variable should be located in the isolated

data section. We implement an unsafe_global_var macro which adds Rust attribute of

#[link_section = ".unsafe_data"]. Listing 5 describes the definition of the rust macros.



1 /********* Macro definition *********/
2 macro_rule! unsafe_global_var! {
3 (static $name:ident: $var_type:ty = $val:expr) => {
4 #[link_section = ".unsafe_data"]
5 static $name: $var_type = $val;
6 };
7 }

Listing 5: The definitions of the rust macros used for isolating global variable.

Isolated Kernel Data Section. We wrote a linker script to specify the isolated data

section (labeled .unsafe_section) at a certain address. When RustyHermit boots, the pkey

of UNSAFE is set for the corresponding page table entries of the section. To allocate global

variables in the .isolated_data section, we leverage Rust’s attribute (#[link_section])

to dedicate variables to that specific section [87]. To ease use of that attribute, we provide

the unsafe_global_var macro, which wraps the definition of a global variable with the

#[link_section] attribute. Developers should explicitly wrap the definition of a global

variable that is accessed by unsafe kernel code with the unsafe_global_varmacro. Listing 4

shows how the global variable KMSG is wrapped with the unsafe_global_var macro (at line

#2). The macro adds the attribute #[link_section] before the definition of the target

global variable (line #4 in Listing 5).

Isolated Kernel Stack. We create a separate stack with the protection key of UNSAFE apart

from the stack for safe kernel functions. This isolated stack is used when calling an unsafe

kernel function such as write_byte in Figure 2. Switching the stack pointer for the unsafe

function to use the isolated stack frame can be done by switching the value of %rsp register

by the inline assembly. We provide a macro (isolate_function defined in Listing 6) to

expand lines of inline assembly because isolating an unsafe function requires: (1) saving the

current stack pointer; (2) switching the stack pointer to the isolated stack; (3) changing



1 /********* Macro definition *********/
2 macro_rule! isolate_function {
3 ($f:ident($($x:tt)*)) => {{
4 asm!("mov %rsp, $0;" // Store stack pointer
5 "mov $1, %rsp;" // Switch to isolated stack
6 "mov $2, %eax;" // N/A perm on SAFE memory
7 "xor %ecx, %ecx;"
8 "xor %edx, %edx;"
9 "wrpkru;" // Write %eax on PKRU

10 "lfence"
11 : "=r"(current_rsp)
12 : "r"(isolated_stack),"r"(UNSAFE_PERMISSION)
13 : "eax", "ecx", "edx" : "volatile");
14

15 $f($($x)*); // Actual function call
16

17 asm!("mov $0, %eax;" // R/W perm on SAFE memory
18 "xor %ecx, %ecx;"
19 "xor %edx, %edx;"
20 "wrpkru;"
21 "lfence;"
22 "mov $1, %rsp" // Restore stack pointer
23 :: "r"(SAFE_PERMISSION),"r"(current_rsp)
24 : "eax", "ecx", "edx" : "volatile");
25 }};
26 }

Listing 6: The definitions of the rust macros used for isolating kernel function.

MPK permission to No Access on the safe kernel memory; (4) calling the unsafe function;

(5) restoring the MPK permission to Read Write on the safe memory; and (6) restoring the

stack pointer to the safe stack.

It only works, however, for an unsafe function that does not need to access its caller’s stack

frame. Some functions get references to local variables of the caller as function parameters

and access them. To cover this case, we also provide a macro (isolate_function_weak)

with extra steps for sharing the caller’s stack frame. The macro that disallows accessing the



caller’s stack frame is, by contrast, named isolate_function_strong. It is also possible

that an unsafe function needs to access data in a frame of one of the caller functions (e.g.,

caller’s caller and so on). We provide share and unshare macros for making local variables

in the remote stack frames accessible/inaccessible to the unsafe function.

Placing annotations represents some effort on the programmer side. However, we consider

it to be relatively low: in our effort to isolate RustyHermit safe/unsafe code and user/kernel

space, less than 2% of the codebase was touched. It is also straightforward: a simple keyword

to place. Finally, that process is guided: any overlooked variable will be identified at runtime

with an MPK fault.

Isolated Kernel Heap. We create an isolated heap for unsafe functions to allocate mem-

ory dynamically. Instead of implementing a new memory allocation function for the isolated

heap, we reuse the existing allocation function for the safe kernel heap. The memory alloca-

tion function maps a virtual-physical address by writing the physical address and page flags

to the corresponding page table entries. The unsafe allocation function additionally sets a

protection key of unsafe on the page table entries.

Raw Pointer Accesses, Inline Assembly. Dereferencing raw pointers and using inline as-

sembly allows access to arbitrary locations in memory, so such techniques should be isolated

in a way that does not change the stack. We thus implemented two macros for develop-

ers: isolation_start and isolation_end. The first macro, isolation_start, is used

to indicate that the isolation starts, so it switches the MPK permission to No Access on

the safe memory regions. The other one, isolation_end, is used to indicate the end of

isolation, and it restores the MPK permission to Read-Write. Kernel developers should add

isolation_start before a raw pointer deference or inline assembly to start isolation and

isolation_end after them to finish isolation.



Non-isolated Function. There is a small amount of unsafe kernel code that cannot be

isolated by our techniques. For example, the spinlock code has a few unsafe functions that

are used by both safe and unsafe kernel code. Introducing isolation on the functions may

cause deadlock. Functions such as lgdt or load_cs also cannot be isolated because they

are called early in the boot process. We also do not isolate x86 I/O port instructions such

as in and out because these functions manipulate device memory. Functions such as wrmsr

and rdmsr are not isolated because they access machine-specific registers. It is worth noting

that all of these unprotected unsafe code blocks are very small, most representing just a few

instructions and extremely unlikely to represent vulnerabilities.

5.3 Copy between Safe/Unsafe Kernel Code

RustyHermit requires BIOS and boot loader data to be located in a fixed memory address.

Accessing this data is done by unsafe functions because it is accessed via a raw pointer,

and this data should also be isolated. However, we cannot apply our isolation mechanism

to it, since RustyHermit stores it at a fixed address. To protect the data, we provide a

copy mechanism. When a thread accesses the data (e.g., an eight-byte variable in a data

structure), only eight bytes are copied to a per-core memory buffer (unsafe_storage). The

thread then accesses unsafe_storage through an unsafe function. If the thread writes

new data to unsafe_storage, it should be synced so it is copied back to the original data

structure. These operations are protected by threads concurrently running on the other

cores. This is because unsafe_storage is restricted to that core only by using %gs-relative

addressing (i.e., each core contains a different base address in the %gs register).

The memory copy function is itself unsafe because it requires raw pointers for source and

destination. We maintain a whitelist of memory addresses to limit arbitrary memory access

by the copy function.



pub extern "C" fn sys_rand() -> u32 {
return kernel_function!(__sys_rand());

}

Listing 7: A system call calling an internal function wrapped by the kernel_function
macro.

The memory copy is, however, unsafe itself. Thus, we implement a safe memory copy

function. Instead of using an intrinsic function (copy_nonoverlapping) directly, source and

destination addresses are screened. Only addresses in a pre-registered whitelist can pass

the address screening. The whitelist is a list of a minimum number of addresses that the

developer registers with his care. As the whitelist must contain addresses as minimal as

possible, the developer should carefully register addresses to the whitelist.

In addition to the unikernel-specific areas, per-core data is accessed by the copy mechanism.

The per-core data is accessed by the unsafe functions (we introduce get and set methods

presented in Listing 1), so it should be isolated. It is not suitable to locate the per-core data

in the isolated data section because per-core data contains important data such as a pointer

to the scheduler.

5.4 User Application Isolation

Isolating the user memory region is simpler than the unsafe kernel isolation because the

application does not share global variables with the kernel. In consequence, their border is

distinct and the MPK permissions should only be switched for system calls.

System Calls. System calls are the gate between user and kernel so MPK permissions

and stack should be switched before making a system call and after returning from it. To

avoid modifying the Rust standard library, we modified the definition of system call. Each

system call calls internal calls (e.g., sys_rand calls __sys_rand in Listing 7) and the internal



function is wrapped with a kernel_function macro.

What the kernel_functionmacro does is similar to the isolate_function for unsafe kernel

isolation. It expands into a few lines of inline assembly and switches the MPK permission

and the stack pointer to the user stack.

Global Allocator. An application written in Rust obtains memory from the system at

runtime through the Global Allocator [86]. We create a separate global allocator for the user

application. As the kernel only uses the Rust global allocator in its initialization process,

the pointer of the global allocator is switched and points to the user global allocator right

before the application runtime starts.

5.5 User Bits on Page Table Entry and Applicability

As MPK is designed for user memory only, the protection key of a supervisor-mode address

is ignored and does not control data accesses to the address [25]. However, unikernels have a

single address space, so we had to set the USER flag on all the page table entries regardless of

kernel and user space. The four-level page table is used by x86-64, so the USER flag should

be set for all the page table entries in all levels of the page tables. We set the USER flag of

the Level3 and Level2 page table entries from the hypervisor (uhyve) side and Level1 and

Level0 from the RustyHermit side.

We believe our isolation mechanism and policies based on MPK are widely applicable in (1)

other unikernels and (2) other OSs and applications written in Rust. Indeed, the proposed

scheme is based on memory areas (i.e., data, stack, and heap) that are commonly present in

programs and operating systems.



Chapter 6

Evaluation of Intra-Unikernel

Isolation: Security

Unikernels such as RustyHermit are still an emerging technology and are not widely used in

production. It was thus difficult to find known vulnerabilities we could use to validate our

unikernel isolation scheme. As a result, we provide unikernel applications with handcrafted

attack scenarios and demonstrate that our isolation technique successfully thwarts those

attacks. We present 2 scenarios, respectively demonstrating (1) user vs. kernel space isolation

and (2) safe and unsafe kernel code isolation.

Section 6.1 presents evaluating user vs kernel space isolation. Section 6.2 introduces secu-

rity evaluation of unsafe kernel isolation. Lastly, Section 6.3 discusses about other attack

scenarios.

6.1 User versus Kernel Space Isolation

In this scenario, we assume the application is external-facing (a web server, for example) and

contains a memory corruption-based vulnerability that a remote attacker uses to perform

arbitrary memory reads/writes. Examples are CVE-2013-2028 [2] for Nginx and CVE-2014-

0226 [3] for Apache. In an unprotected unikernel, due to the lack of user/kernel isolation, the

attacker would then be able to use the vulnerability to freely tamper with or leak sensitive

kernel data. This could be used to break security mechanisms enforced by the kernel, such
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!!! Isolation FAULT !!!
Faulty address: 0x823880 [kernel | data | RW]
Faulty PC: 0x402054 [user | code | RWX]
-> /home/user/test/main.c:76

Registers:
- rax: 0x2
- rbx: 0x10040041A
...

Listing 8: Example of reported MPK fault.

as Address Space Layout Randomization (ASLR).

We reproduced this scenario by writing a simple unikernel application that accesses the kernel

data segment. In an unprotected unikernel, an attacker could freely read and write kernel

data. Our user application isolation scheme can prohibit this attack. As the user application

is running with the MPK permission USER, which disallows to access the kernel memory

(including the kernel data section). When the write operation is issued, an MPK fault

occurs and unikernel execution is terminated. Our system also displays some information

about the fault, such as the instruction pointer at the time and the faulty address, in order to

help a system administrator investigate the attack. An example of the notification message

printed on the screen for such a fault is presented in Listing 8

6.2 Unsafe Kernel Isolation

In this scenario, we assume that an attacker is able to hijack the control flow of the uniker-

nel application and divert it to trigger the execution of buggy unsafe kernel code through

a system call. Depending on the vulnerability in the kernel code, the attacker could then

tamper/leak kernel data, escalate privileges, execute arbitrary code, etc. Examples of vul-

nerable kernel code called through system calls with specific parameters are numerous, with

specific examples being CVE-2013-1763 [1] and CVE-2016-10229 [4].



We reproduced such a scenario by assuming an attacker is able to manipulate the parameters

of the per-core kernel variable access methods presented in Listing 1. This would give the

attacker arbitrary memory read/write capabilities. The safe/unsafe kernel isolation method

we implemented prevents malicious calls to set/get methods from accessing memory that is

not allowed, i.e. the majority of kernel memory. When the unsafe kernel code tries to access

the inaccessible memory regions, an MPK fault terminates unikernel execution and provides

the instruction pointer at that point as well as the faulty address.

6.3 Other Attack Scenarios

An attack scenario against our system would be unsafe code tampering with the PKRU.

possible mitigation against such an attack would be to use binary analysis/rewriting to

validate/sanitize any use of the WRPKRU instruction, as done in ERIM [111]. An attacker

could also try to bypass such checks by using Return Oriented Programming (ROP) to jump

to code snippets manipulating the PKRU. Classical mitigation used in all modern systems

against ROP is ASLR. Although they are currently not implemented in RustyHermit, both

static analysis and ASLR can be integrated without any runtime overhead.

There is also a possibility of information leaks or data-oriented attacks due to unused registers

not being saved and scrubbed upon safe/unsafe code switches. We chose not to do so for

performance reasons, as it is certain that saving and restoring registers, for example with

the xsaveopt instruction, will increase the domain switch latency.



Chapter 7

Evaluation of Intra-Unikernel

Isolation: Performance

We conducted a performance evaluation to demonstrate our design principles: providing

isolation with minimal overhead. The objective of the performance evaluation is to answer

the following questions: First, what are the overheads of switching across isolated safe and

unsafe kernel code and across isolated kernel/user code? Second, what is the performance

impact of such isolation on real applications? Third, how does our scheme perform in a

multi-threaded environment? We chose vanilla RustyHermit as a baseline and compare our

prototype against it. Our experimental setup has an Intel Xeon Silver 4110 CPU (2.10GHz,

eight physical cores) with 64KB of L1 cache, 1024KB of L2 cache per core, and 11MB of

L3 cache. The setup has 192GB of main memory and runs Ubuntu 18.04 with Linux 4.15

(needed for MPK support). Rust’s cargo version is 1.40.0.

In this chapter, Section 7.1 discusses about performance evaluation of unsafe kernel isola-

tion. Section 7.2 introduces performance evaluation of user application isolation. Lastly,

Section 7.3 presents results of evaluation of real applications.

7.1 Unsafe Kernel Isolation

In this section, we evaluate the unsafe kernel isolation. We aim to measure the overhead of

calling an unsafe kernel function isolated by our techniques. This is because isolating unsafe
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kernel functions may contain the possible overhead (e.g., MPK permission switching, stack

switching, data copying) compared to vanilla ones. We chose examples of some unsafe kernel

functions and implemented a micro-benchmark to measure the time cost of the isolated

unsafe kernel functions.

Write_bytes. write_bytes is an unsafe function writing byte to an arbitrary address. We

isolate write_bytes with isolate_function_strong macros and call it one million times,

then calculate the time cost of a single function call.
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Figure 7.1: Cost of isolated write_bytes call.

The result, presented in Figure 7.1, contains the total cost of the unsafe function call, com-

posed of: switching the kernel stack and the MPK permission, the actual function call, and

restoring the stack and the MPK permission. We change the write size from 1 byte to 4KB.

For each size, we iterate one million times and calculate the slowdown caused by the un-

safe function isolation. With small writes, the isolated write_bytes is four times slower

than the vanilla one. This is because the majority of the overhead comes from our isolation

mechanism. However, as the write size increases, the cost of calling write_bytes dominates

the overall cost and the isolation overhead becomes negligible. In particular, our prototype



introduces a 6% slowdown when writing 4KB at a time.

Per-core Variable Get and Set Methods. We also evaluated the cost of the core_id

and set_core_scheduler functions to measure the per-core variable get and set methods

(Percore.get and Percore.set). Introduced in Figure 1, Percore.get and Percore.set

could be used as attack vectors to gain arbitrary memory read/write capabilities. Their usage

as potential attack vectors means they should be isolated. In addition, they are invoked by

kernel functions such as core_id and set_core_scheduler, which are frequently called in

the kernel code. This makes them appealing as candidates for our unsafe kernel isolation

as well. To do this, we created a micro-benchmark that iteratively calls core_id to invoke

Percore.get and set_core_scheduler to invoke Percore.set. We measure the time cost

of a hundred million calls, calculate the cost of one function call, and compare the isolated

one to the vanilla one.

Table 7.1: PerCoreVariable get and set methods respectively called by core_id and
set_core_scheduler.

Caller function Unsafe function Cost (µs)
Isolated Vanilla

core_id Percore.get 0.202 0.017
set_core_scheduler Percore.set 0.367 0.020

Table 7.1 shows the results of the experiment. First, we observe the performance difference

between Percore.get and Percore.set on both the isolated and the vanilla benchmarks.

set_core_scheduler generally costs more than core_id because memory reads are faster

than writes. When comparing the isolated functions to the vanilla ones, the isolated functions

take longer due to the cost of memory copies introduced by the copy mechanism (Section 5.3):

it introduces additional memory copy overhead besides the unsafe kernel isolation overhead

(MPK permission switching, stack switching). Percore.get/ set copies the original per-

core values to the unsafe memory region, which is followed by the unsafe read/write operation



(Listing 1) being performed on the unsafe memory region. Finally, the updated data is

copied back to the original per-core data location. This additional overhead explains the

performance degradation for the isolated Percore.get/set methods.

7.2 User Application Isolation

We evaluated user application isolation by measuring the cost of system calls, as they are a

bridge between kernel and user space. To do so, we implemented micro-benchmarks written

in both Rust and C and compare them. They exhibit null calls and getpid calls, the latter

involving data copying. In addition to vanilla RustyHermit, we also evaluated system calls in

Linux running on KVM. For Linux-KVM, we tested on an Ubuntu 17.10 distribution using

Linux 4.13. We compiled all of the code with optimization level 3.

Null System Call. We evaluated a null system call to measure the pure system call latency.

This call does nothing other than return, allowing us to measure the pure overhead of our

user application isolation mechanism. For Linux, we use the getpid system call. We call

this null system call a hundred million times and calculate the average cost for one function

call. Note that we disabled vDSO for Linux in order to avoid potential user-mode system

calls.

Figure 7.2A represents the cost of the null system call in the Rust and C applications. The

isolated null system call in the Rust application takes 0.19 µs while the vanilla one takes

0.002 µs. This difference comes from the user application isolation mechanism that we pro-

vide. The vanilla system call only has the overhead of function call. However, the isolated

system call introduces: (1) accessing the Task structure through the per-core scheduler

(which can be accessed by Percore.get and also introduces the overhead mentioned in Sec-

tion 7.1) to get the user stack address, (2) switching the MPK permission and stack pointer.
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Figure 7.2: Evaluation of system calls.

Furthermore, the compiler loses optimization possibilities due to the use of the macros that

we provide. Nonetheless, the system call isolated by the user application isolation mecha-

nism is approximately three times faster than getpid on Linux (0.58 µs). This demonstrates

that we can provide isolation while still maintaining the low system call latency feature of

unikernels.

In the C application, all of the system call results are a bit slower (the isolated system call

takes 0.21 µs, the vanilla version takes 0.005 µs, and the Linux version takes 0.61 µs). The

user application isolation overhead still dominates the overall cost of the system call and

reduces compiler optimization possibilities.

Getpid. This function is provided for user applications and invokes the sys_getpid system

call. sys_getpid also contains unsafe/safe switches and the copy mechanism used for the

per-core data. Thus, the cost of the getpid function can represent the overall overhead of

the user application isolation mechanism. As in the null system call experiment, we set a

micro-benchmark to make the call a hundred million times and calculate the average cost

for one function call. Figure 7.2B presents the results of getpid on our prototype, vanilla



RustyHermit, and Linux. We tested both Rust and C applications.

In all cases, the system call from the Rust application outperforms that of the C application,

as with the null system calls. In addition, the cost gap between Rust and C are similar to that

for the null system call. The memory copy overhead is the main factor in the performance

degradation of our prototype, as the PID of the task is stored in the Task structure that is

referenced by the current pointer in the per-core scheduler. Accessing the per-core scheduler

is performed via Percore.get, which introduces the additional memory copy.

With our scheme, the getpid system call is still 2x faster than it is on Linux, demonstrating

that our technique preserves unikernel benefits.
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Figure 7.3: Evaluation of sbrk and multi-threaded getpid.

Sbrk. We measured sbrk (only used by C applications) latency for evaluation of the user

application isolation. We call sbrk with a parameter of 16 (an increment of 16). sbrk calls

sys_sbrk, which does not include expensive per-core variable methods such as Percore.get

and Percore.get. However, our user application isolation introduces the overhead of the

MPK switch and the stack switch. Despite this, sbrk with our user application isolation

still outperforms the Linux one significantly, as shown in Figure 7.3a.



Multi-threading. To demonstrate that our intra-unikernel isolation method works in multi-

threaded environments, we created a Rust benchmark launching up to 8 threads and paral-

lelizing an iteration of ten million getpid calls. We could observe that our intra-unikernel

worked with multi-threading and scaled with the number of threads (Figure 7.3b).

7.3 Results on Real Applications

To measure the overall performance impact of our system, we evaluated our prototype with

macro-benchmarks. We used memory/compute intensive benchmarks from various suites

including NPB [94], PARSEC [13], and Phoenix [91].1
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Figure 7.4: Execution times of macro benchmarks.

The results are shown in Figure 7.4, illustrating that the average slowdown imposed by the

intra-unikernel isolation compared with the vanilla unikernel is only 0.6%.

We also counted the number of unsafe/safe switches and user/kernel switches and summarize

them in Table 7.2. Remember that one unsafe function call corresponds to two unsafe/safe
1Note that some applications from these suites are not supported due to the limited compatibility of

RustyHermit.



Table 7.2: Number of unsafe/safe switches and user/kernel switches invoked by benchmarks.

Benchmark Unsafe/safe
switches

User/kernel
switches

npb-cg 5218 272
npb-is 4294 106
npb-ep 4370 116
npb-mg 4606 158
phoenix-kmeans 6882 1580
phoenix-pca 19402 7844
whetstone 3758 14
dhrystone 3734 10
livermore 13118 1574
linpack 3878 38

switches (from safe to unsafe switch on entry and unsafe to safe switch on return) and one

system call corresponds to two user/kernel switches. Especially, phoenix-pca has a total of

27,246 switches and switches at a rate of 1,238 per second, which is system intensive. The

evaluation demonstrates that our system introduces negligible performance overhead for real

applications.



Chapter 8

Design of Storage Server for

LibrettOS

In this chapter, we describe the design of the storage server for LibrettOS. We target to add

strong isolation on the system components in order to enhance security, but still achieve

reasonable performance. Section 8.1 describes the overall architecture of the storage server

and applications. Section 8.2 and Section 8.3 present the frontend and backend drivers

respectively. Section 8.4 discusses initialization process using hypercalls. Our IPC design is

explained in Section 8.5. Lastly, Section 8.6 describes NVMe and the number of memory

copies.

8.1 Storage Server and Application

Figure 8.1 depicts the architecture of storage server. Storage server and applications are

built upon HVM mode rumprun unikernels on Xen hypervisor. The frontend driver is linked

as a library in the application’s address space in order that the application can communicate

to the storage server. On the storage server-side, the backend driver is linked as a library

along with other device drivers such as the NVMe driver. The frontend and backend drivers

communicate through our own IPC. The detailed design of the IPC is discussed in Section 8.5.

Applications can issue block I/O requests through the frontend driver. Through the IPC

channel, the I/O requests are transferred to the backend driver. The backend driver can
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Figure 8.1: Design of the storage server.

request the receiving I/O to the actual storage device drivers (e.g., NVMe driver). As

described in Figure 8.1, the device driver can exclusively access the hardware resources due

to Xen’s PCI-passthrough feature.

On the application domain, the frontend driver creates a virtual block device node such that

the application can mount, open, write, and read on the node. The frontend driver receives

struct buf from the file system on the upper layer. struct buf is the buffer header of

NetBSD. The frontend driver transfers the data and metadata selectively chosen. From

careful consideration, we set the size of block IO to 64KB. For the larger data I/O (e.g.,

2MB), the file system divides the data into 64KB segments, creates several bufs, and issues

block I/O. As we run storage server and applications on each rumprun unikernel, strong

isolation is provided by virtualization.

8.2 Frontend Driver

The frontend driver is located in an application domain. Its fundamental role is sending and

receiving data to be written/read from the storage device or ramdisk. The frontend transfers



data through the ring buffers and also initializes them. The frontend driver allocates a

chunk of memory and grants references of the pages for the backend driver such that the

backend driver can map the pages to its address space. As we opted to run our servers and

applications as Xen domains, the frontend driver leverages Xen’s APIs to share its memory

and send interrupts.

The frontend driver initializes six rings and two data buffers. Each ring is coupled with

atomic variables which are used to notify the other end about its status (e.g, asleep or

awake).

The frontend driver creates a dedicated thread to receive responses from the backend driver.

The thread is called the receiver thread. The receiver goes to sleep right after it is created.

When the backend driver sends a response for the I/O request from the frontend, it also

wakes up the receiver thread by sending a VIRQ. The receiver thread checks entries from

the ring buffer and consumes them. It copies the data to the corresponding buf in case of a

read operation and calls biodone to finish the I/O operation.

The frontend driver creates a virtual block device node at /dev directory. The device node is

an interface for applications to do block I/O. Like a regular file or block device, an application

can open, read, or write data on it. The application can mount the virtual device node on its

file system as it does with a regular block device. We build the frontend driver as a library

such that applications can link it in their address space.

8.3 Backend Driver

The backend driver is located in the storage server domain and its role is forwarding block

I/O requests to the storage device and replies responses back to the frontend driver. As

explained in the previous section, the backend maps the shared pages in its address space



using Xen’s APIs and grant references. Similar to the frontend’s receiver thread, there is a

dedicated thread for receiving. The receiver thread of the backend driver is created when

the communication channel (ring buffers and VIRQs) is built. After the thread is created,

it also goes to sleep and wakes up by the VIRQ from the frontend.

To build the communication channel, the backend and frontend drivers need to provide

each one’s information required for mapping the shared pages and building event channels.

Provision of the information is done by hypercalls. We introduce a few hypercalls for the

frontend and backend drivers. After they are initialized, they call hypercalls to register their

information in Xen’s memory. More details are described in Section 8.4.

8.4 Driver Initialization and Hypercalls

The backend driver must be running before the frontend driver starts. The backend driver

allocates a welcome port. Then it calls a hypercall to register the port in Xen’s memory.

The welcome port is an event channel port that can be bound to the frontend driver’s

hello port. When a frontend driver starts, it initializes shared pages, builds ring buffers,

their atomic variables, and allocates the main event channel ports which are used as the

VIRQs. Then the frontend driver retrieves the information of the backend driver via a

hypercall. The information includes the domain id number of the domain where the backend

driver is running, and the welcome port that the backend driver allocated before. With

the information, the frontend driver can construct an event channel. After the first event

channel is built, the frontend driver registers its information in Xen’s memory through a

hypercall. Finally, the frontend driver pokes the backend driver by sending a VIRQ on the

welcome port of the backend, or the hello port of the frontend. The backend driver’s handler

of the welcome port executes the process of connecting with the frontend driver (mapping

the shared pages, binding the main event channel for VIRQs).



8.5 Inter-Process Communication

The communication channel between the backend and frontend drivers consists of ring buffers

and VIRQs. In our design, six rings and two data buffers are created on the frontend’s

memory and shared with the backend driver (see Figure 8.2). Two VIRQs are used for

signaling the other end. We leverage Xen’s grant references for the shared pages and Xen’s

event channels for the VIRQs. To avoid performance degradation of the hypercalls, we

preallocate shared pages and VIRQs on the frontend’s initialization stage. Once the shared

pages and VIRQs are built, there is no additional allocation such that additional hypercalls

are avoided.

shared pages
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Figure 8.2: Illustration of inter-process communication (IPC).

Nonetheless, sending a VIRQ requires a hypercall. Each time one end produces an entry

in the ring buffer, it should ping the other end to consume the entry. Sending VIRQ costs

the overhead of the hypercall, so we need to minimize the number of the VIRQ sent during

the I/O process. To avoid frequent VIRQs, we create atomic variables and attach them

to the ring buffers. When one end is consuming the ring buffer, it sets a value on the

corresponding atomic variable attached to the ring. With the value in the atomic variable,

the other end (producer) can know the consumer is running. Therefore, the producer doesn’t

need to send VIRQ to the consumer. If the producer knows the consumer is sleeping, it sends



VIRQ to wake the consumer to start consumption. Both backend and frontend drivers are

either producer and consumer in each case. When sending write requests from the frontend,

the frontend is the producer of the write request allocate ring and the backend is the

consumer. When sending the I/O responses, the backend is the producer of the write

response allocate ring, and the frontend is the consumer.

Ring Buffers. The ring buffers are key components of our IPC design. We use a lock-free

ring buffer implementation from [77] There are total of six rings and two data buffers. Two

free rings (large free ring and small free ring) are the list of available indices of the two data

buffers (large buffer and small buffer respectively). For requesting to write, the frontend

driver needs an entry of the large data buffer because the write request contains data to be

written. On the other hand, For requesting to read, the frontend driver uses an entry of the

small data buffer because the read request only contains metadata such as the size of data

read and block number of the storage device. The backend driver creates responses of the

write operation with the small buffer because the write response contains the size of data

written and error code. For responses of reading, it creates responses with a large buffer,

because the read data is transferred through the responses.

The ring buffers are built on the shared pages between the frontend and backend drivers.

The frontend initializes the ring buffers and the shared pages only when it is launched.

Therefore, there is no additional overhead from the hypercalls during the runtime.

Virtual Interrupt. Interrupt is also one of the key components of the IPC. As the backend

and frontend drivers are running in each guest domain, we use Xen’s event channel. There

are three event channels built between the backend and frontend drivers. The first one is

the welcome channel which is discussed in Section 8.4. The other two channels are used for

the data transfer. Sending a VIRQ through the event channel requires to call a hypercall.



To avoid excessive hypercall overhead, the sender should not send VIRQ while the receiver

is active. We use atomic variables for this purpose. Each atomic variable is attached to each

ring and shared by both ends. When the receiver thread is looking at the ring, it sets the

atomic variable with a dedicated value in order that the sender knows. With the atomic

variables, unnecessary VIRQs are avoided and this leads to minimizing the number of calls

of the hypercall.

8.6 NVMe and Memory Copies

The NVMe driver is linked as a library in the unikernel image in order that the storage

server directly accesses the NVMe device. We implement a glue code to build and link the

NVMe driver. Furthermore, the NVMe device is enumerated in the rumprun unikernel by

Xen’s PCI-passthrough. The backend driver creates a buf structure and fills out the meta

data. For a write operation, we opt to reuse the data buffer of the ring buffer. The buffer

pointer in the buf points to the data buffer in the ring buffers to avoid an additional copy.

For a read operation, on the other hand, a new memory buffer is allocated and data read

from the NVMe device is written on it. By reusing the data buffer of the ring buffer, we

could limit the number of memory copies. In the current design, there are two copies for

read and one copy for write.



Chapter 9

Implementation of Storage Server

In this chapter, we discuss the detailed implementation of the design of the storage server

described in Chapter 8. Section 9.1 discusses about rumprun HVM mode. Section 9.2

introduces modification on Xen hypervisor. Section 9.3 presents frontend driver. Section 9.4

explains backend driver. Section 9.5 explains ring buffers and virtual interrupt. Lastly,

Section 9.6 describes block I/O routine.

9.1 Rumprun HVM Mode

Our storage server and applications are built on Rumprun HVM mode. Since unikernel is

required to have application code, we need to code a simple application code for the storage

server. We put an infinite loop doing nothing but sleep in the application code.

The backend and frontend drivers are linked to applications as libraries. We create a library

called librumpdev_myblk, that is compiled with the backend or frontend driver code for

each sake. We build rumprun unikernels with NetBSD 9.0.

9.2 Modification on Xen Hypervisor

We also make a modification on Xen hypervisor. Our custom Xen hypervisor is based on

Xen 4.14 and include a new hypercall that is used in the domains’ initialization. Our new

hypercall has operations: (1) registration of the backend and frontend driver; (2) fetching
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the information of each driver. The registration operations of the hypercall simply store the

information of the drivers (e.g., domain id, port numbers, and grant references) in Xen’s

memory. On the other hand, the fetching operations copy the information from the Xen’s

memory to each driver’s memory. Once the backend and frontend drivers are connected

through their communication channel (i.e., IPC), our custom hypercall is not used.

9.3 Frontend Driver

The frontend driver is in charge of bridging applications and the storage server. In addition,

it allocates pages to be shared with the backend driver and creates ring buffers in the shared

pages. It also initializes the atomic variables attached to the rings.

Initialization of Ring Buffers. Right after the application domain is launched, the fron-

tend driver starts the initialization process. It queries the information of the backend driver

via the hypercall. Then, it allocates memory and creates rings and data buffers. Six rings are

created and two data buffers are allocated in continuous pages. In the frontend_init_ring

function, four pages are allocated. These four pages contain the grant references of the

shared pages. The grant references of the four pages are stored in Xen memory through the

hypercall. Later, the four pages are mapped by the backend driver such that it can get the

grant references for the shared pages. The atomic variables attached to the rings are initial-

ized too. After the ring buffers are initiated, the frontend driver allocates the event channel

ports and register itself through the hypercall. Finally, a VIRQ is sent to the welcome port

of the backend driver.

Virtual Block Device and Driver Library. The virtual block device node is an interface

that applications can communicate with the frontend driver. We code a driver library that

creates a virtual block device node in /dev directory. Also, the library defines function



wrappers such as open, read, write, and ioctl. File operations called by the application are

routed to the functions in the driver library. All the backend and frontend drivers’ code is

also linked to the driver library. Therefore, both the storage server and application domain

should link the driver library to their applications.

Data Transfer and Status Synchronization. Data of the block I/O is transferred through

the ring buffers. When the application requests block I/O, the pointer of the struct buf

is passed to the frontend driver. The frontend driver extracts the data, size of data, and

block number from b_data, b_bcount, and b_blkno of the struct buf respectively. Then it

copies the data, size, block number, and pointer of the struct buf to the ring buffer. It has

to track the pointer of struct buf in order to close the I/O request with biodone function.

Finally, it sends VIRQ to the backend driver if it is asleep. More details are described in

Section 9.6.

Threads that dequeue an entry from the rings go to sleep when the rings are empty and set

the atomic variable to a negative value. As the atomic variables are shared, the backend

driver knows whether the threads sleep or not. Later, they are wakened by the VIRQs from

the backend driver. If the rings are not empty and the threads are working on the rings, the

atomic value is set to 1 such that the backend driver does not send the VIRQs.

Closing Block I/O. The frontend driver is in charge of calling biodone function to close

the block I/O request. The response from the backend driver contains the pointer of struct

buf, size of data written/read, and error code. The frontend driver calculates the size of the

remaining data to be processed and stores it in b_resid of the struct buf. Eventually, the

frontend calls biodone with the buffer header (struct buf) containing all the metadata.

At this point, the block I/O ends.



9.4 Backend Driver

The backend driver resides in the storage server domain. Its role is receiving I/O requests

from the frontend, do I/O, and send responses back. As the storage server domain contains

device drivers, the backend driver can directly send the requests to the device drivers. Similar

to the frontend driver, the backend driver is built as a library and linked to the application

in the storage server domain.

Initialization and Connecting to Frontend Driver The backend driver has to start

before applications are launched. It first allocates the welcome port and registers its domain

id, and the welcome port number. After the frontend driver finishes its initialization, a VIRQ

on the welcome port is received and invokes the backend driver to connect with it. The grant

references for the shared pages and event channel ports are already in the memory of Xen,

the backend driver maps the shared pages and builds the event channels.

Receiver Thread. The receiver thread is also created when the backend driver is connecting

with the frontend. The thread sleeps when the rings are empty, but wakes up by the VIRQ

from the frontend driver. Rump kernel context should be obtained for the receiver thread

because it calls kernel APIs related to the block I/O.

Ramdisk and NVMe. We also implement a ramdisk in the backend driver. 512 MB of

memory chunk is allocated from the driver library code. To measure the pure overhead of

the backend and frontend drivers, we use the ramdisk instead of real storage devices. This

way, we can avoid the overhead that comes from the storage device.

As explained in Section 8.6, the backend driver creates an empty struct buf by getiobuf.

then it fills out the metadata: b_bcount is the size of data, b_blkno is the block number,

b_dev is the device number of the block device, b_iodone is the pointer to the callback



function, and b_private is for private use. We use b_private to store the address of buf

in the frontend to track the I/O requested by the application. Also b_cflags is marked

as BC_BUSY indicating that the buf is in use. The b_flags is set to B_WRITE or B_READ

accordingly. For a write operation, the b_data points to the data buffer of the ring buffer

to avoid a memory copy. For a read operation, a memory buffer is allocated and the pointer

of it is stored in the b_data. Finally, the backend driver calls bdev_strategy with the bp

parameter (pointer to the buf structure) to issue storage I/O to the NVMe device.

9.5 Ring Buffers and Virtual Interrupt

Ring Buffer. Ring buffers are built on the shared pages. To share pages between domains,

the owner of the memory grants (frontend driver in our case) access to the other end who

maps the pages. The frontend driver initializes the grant table in its early stage. Then,

it sends the grant references to the backend driver. The backend driver maps the pages

by calling HYPERVISOR_grant_table_op with the GNTTABOP_map_grant_ref parameter and

grant references. The drivers pre-allocate a big chunk of shared memory on their initialization

process, therefore they do not call the hypercall for a single I/O request as the existing

blkfront driver does in Linux or rumprun.

The size of the data block and the total number of entries of the rings significantly affect

the performance of the ring buffers. We are able to set up 2048 entries for each ring because

more than 2048 is not allowed due to the limited memory. Also, we set the data block size

to 4098 which is equivalent to the block size that NetBSD kernel is using.

VIRQ. We leverage Xen event channel to implement virtual interrupt between drivers.

To allocate an event channel and the port of it, HYPERVISOR_event_channel_op with the

EVTCHNOP_alloc_unbound parameter is used. Once the port number is allocated by Xen,



Table 9.1: Values of the synchronization variables.

frings arings
Active 1 1
Sleep -2 0

the other end has to know it to bind. With the port number, one calls HYPERVISOR_event

_channel_op with the EVTCHNOP_bind_interdomain parameter to bind it. Then, a new port

number for the one binding is allocated by Xen. Each end has its own port number. To send

a signal, one can call HYPERVISOR_event_channel_op with the EVTCHNOP_send parameter

and port number that it has.

Values of Atomic Variables We create six atomic variables attached to six rings, but we

only use four of them. The atomic variables of two frings are initialized to -2 and others to

0 when the rings are initialized. Two atomic variables of the frings with -2 are meaning the

threads are sleeping. When they are active, the atomic variables are set to 1. The other

atomic variables have 0 when the threads are inactive, and 1 for when they are active. The

values of the atomic variables according to the status of the threads are shown in Table 9.1.

9.6 Block I/O Routine

The backend and frontend drivers communicate through ring buffers which are in the shared

pages. We create six ring buffers, a large data free ring (large_fring), small data free

ring (small_fring), write request allocate ring (write_req_aring), write response allocate

ring (write_rsp_aring), read request allocate ring (read_req_aring), and read response

allocate ring (read_rsp_aring). Two frings are maintaining available indices of data buffers.

Figure 8.1 describes a write operation: 1 The frontend driver dequeues an index from

the large fring to 2 create a write request. 3 The data to be written is copied on the

corresponding data buffer and 4 the index is enqueued into the write req aring. The
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Figure 9.1: Block I/O routine of storage server.

frontend driver sends a virtual interrupt (VIRQ) if the other end (backend driver) is asleep,

otherwise does not. 5 The backend dequeues the index of the data buffer containing the

data from the write req aring. 6 The backend can do 7 a block I/O to real storage

hardware or ramdisk. 8 The data buffer is free to be released, so its index is enqueued

back to the large fring. 9 After the I/O is done, the backend driver creates a response by

retrieving an index of the small data buffer. This can be done by dequeuing from the small

fring. 10 The backend driver fills out the response with information (e.g., the original buf

structure pointer, size of data written, and error code) and 11 enqueues the respond to the

write rsp aring. Then, the backend driver sends a VIRQ if the frontend driver is blocked,

otherwise does not. 12 The frontend driver dequeues the index from the write rsp aring

and 13 accesses the rsp. 14 biodone (block I/O done) function is called. 15 Finally, the



frontend driver enqueues the released index to the small fring.



Chapter 10

Evaluation of Storage Server

In this chapter, we evaluate the storage server using micro- and macrobenchmarks and

compare it against Linux. I/O from an application to storage goes through several layers

such as file system, block layer, buffer cache, and so on. To measure overhead introduced by

the storage server, we implement a microbenchmark and ran it with a ramdisk. Furthermore,

we evaluate the storage server with an NVMe device. We also measure the performance of

real applications with macrobenchmarks.

Section 10.1 explains our experimental setup. Section 10.2 presents the microbenchmark.

Lastly, Section 10.3 discusses about the macrobenchmarks.

10.1 Experimental Setup

Table 10.1 shows our experimental setup.

Table 10.1: Experimental setup.

Processor 2 x Intel Xeon Silver 4114, 2.20GHz
Number of cores 10 per processor, per NUMA node
HyperThreading OFF (2 per core)
TurboBoost OFF
L1/L2 cache 64 KB / 1024 KB per core
L3 cache 14080 KB
Main Memory 96 GB
Network Intel x520-2 10GbE (82599ES)
Storage Samsung 970 EVO Plus 500GB NVMe SSD
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We run Xen 4.14.0, and Ubuntu 20.04 with Linux 5.4.0 as Xen’s Dom0 (for system initial-

ization only). We use the same version of Linux as our baseline. Rumprun unikernel that we

used for the experimental is the version maintained in the repository [102] and comes with

NetBSD 9.0 code. We set the I/O block size to 64KB for the best performance. Also, the

size of the ring buffer is set to 512 entries, built on 12 pages for a single ring.

10.2 Microbenchmarks

We implemented a microbenchmark repeatedly calling read and write. It first opens the

virtual block device (/dev/myblk) as a single file. The block device is introduced in Sec-

tion 9.3. We set the size of the message written to a file from 4KB to 4MB. The elapsed

time of the iteration is measured by my_gettime function for the rumprun. my_gettime

function can be called in the application code, and its function pointer is linked to a

function (frontend_gettime) in the frontend driver. frontend_gettime function calls

rumpuser_clock_gettime with the RUMPUSER_CLOCK_ABSMONO parameter for a timestamp.

rumpuser_clock_gettime is a function that rumprun unikernel uses to get a value of mono-

tonic clock in nanoseconds. Microbenchmark for Linux leverages the regular clock_gettime

function for a timestamp. With the elapsed time, we calculate the average time for a single

read/write call.

10.2.1 Ramdisk

We evaluate the storage server with the microbenchmark and ramdisk. For each size of the

message, we measure the elapsed time of 100,000 iterations of read/write operation. However,

we could only measure the iteration of 10,000 due to the limited size of the ramdisk in Linux.

We measured zero-copy and no-IPC versions as well. The zero-copy version comments out

the memory copies in the backend and frontend driver code. In addition, the no-IPC version



excludes all the backend and frontend code. That is, the block device operation does nothing

but returns with a return value of the successful block I/O. We could break down the overhead

of the storage server by comparing the zero-copy version, no-IPC version, and the intact

storage server.
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Figure 10.1: Read throughput of microbenchmark-ramdisk.

Figure 10.1 and 10.2 are the throughput of the microbenchmark running with the regular

storage server, zero-copy, no-IPC version of it, and Linux. We run the microbenchmark 10

times and calculate a mean and standard deviation. The bars present the mean value of

throughput, and the error bars present the standard deviation.
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Figure 10.2: Write throughput of microbenchmark-ramdisk.

As shown in the results (see Figure 10.1), the throughput of the storage server with 4KB



message is 1.02GB/sec while the throughput of the zero-copy version is 2.12GB/sec. With

other message sizes, the regular storage server’s read performs 2x to 4x slower than the zero-

copy version. This is due to the additional copies introduced in the backend and frontend

driver. The zero-copy version of the storage server performs faster than Linux until the

message size of 32KB. However, Linux outperforms after 64KB because the IPC overhead

from the ring buffer increases as the message size increases. On the other hands, the no-IPC

version is the fastest in all the message size, because system calls in the monolithic kernel

are replaced with normal functions in the rumprun unikernel.

The throughput of write (see Figure 10.2) in the storage server is 0.8GB/sec with 4KB

messages. However, it bumps up to 1.9GB/sec with 64KB messages. This is because we set

the I/O block size to 64KB such that even messages smaller than 64KB are read or written

by a 64KB block. In addition, the rump kernel asynchronously batches write operations.

As a result, all the throughput of the storage server bumps up with the message size larger

than 64KB.

10.2.2 NVMe

We evaluate the storage server with an NVMe device and compare it with a rumprun and

Linux. The microbenchmark measures the elapsed time for reading/write 4GB of data and

calculates the throughput. We set PCI-passthrough for the rumprun unikenel to access the

NVMe device directly. Figure 10.3 and 10.4 show the throughput of read and write with

different message sizes.

For reading (see Figure 10.3), the storage server achieves half throughput of Linux and the

rumprun unikernel. The overhead comes from the ring buffer IPC and additional memory

copies. With write operations (see Figure 10.4), the storage server is as fast as the rumprun

unikernel. Particularly, message sizes of 2MB and 4MB, the storage server is as fast as Linux.
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Figure 10.3: Read throughput of microbenchmark-NVMe.

The throughput of the storage and the rumprun unikernel bumps up at the 64KB message

size because both set the default I/O block size to 64KB.
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Figure 10.4: Write throughput of microbenchmark-NVMe.

With the large message size, all three are saturated to the same throughput. We attribute

it to the NVMe device’s performance slow down as it internally does the wear leveling and

garbage collecting in case of the write operation.

10.3 Macrobenchmarks

We evaluate the storage server with the macrobenchmarks to see how it works with real

applications. A client machine that we use has 10GbE NIC (Intel x520-2 10GbE), 32GB



memory, AMD FX-8350 8-Core Processor, and is connected to the server machine through

an InfiniBand [107]. Ubuntu 18.04 with Linux 4.15.0 is running on the client machine.

10.3.1 NFS Server

To evaluate the storage server, we run an NFS erver macrobenchmark by using Sysbench

v1.0.11/FileIO [105] from the client machine. We mount an NVMe partition initialized with

the ext3 file system and export it through the NFS server.
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Figure 10.5: Throughput of read of NFS server with Sysbench.

From the client side, we mount the NFS share and run the Sysbench FileIO with different

block sizes. We set a single thread, total 30GB of 128 files, 10 seconds for each block size,
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Figure 10.6: Throughput of write of NFS server with Sysbench.



and 1:1 read/write ratio on Sysbench. Also, we set an option ”–file-extra-flags=direct” to

avoid page cache on the client side. We ran Sysbench several times and calculated the mean

and standard deviation of the throughput of read/write.

Figure 10.5 and 10.6 show the throughput of read and write. For the small block size (less

than 512KB), the storage server outperforms Linux. Particularly, the storage server is more

than 7 times faster than Linux with 4KB block. This is because the storage server avoids

the system call layer which is known to cause a non-negligible performance overhead [100].

However, Linux outperforms the storage server with the large block size. This is because of

the additional memory copies and IPC overhead.



Chapter 11

Conclusions and Proposed

Post-Preliminary Exam Work

In this dissertation, we presented techniques to provide isolation on software and system

components for security and reliability improvement. The intra-unikernel isolation with In-

tel MPK introduces an isolation scheme for components within a unikernel instance. In

particular, it allows us to keep the single address space feature of unikernels and thus main-

tain their performance benefits by relying on the Intel MPK technology. We demonstrated

an overhead as low as 0.6% for macro-benchmarks.

We also introduced the storage server for LibrettOS. Security concerns of the storage system

can be mitigated by the strong isolation imposed on the storage server. The unique design

of IPC using the lock-free ring buffers allows the storage server to achieve reasonable perfor-

mance compared with monolithic OSs such as Linux. By building on rumprun unikernel, the

storage server can leverage a wide range of NetBSD device drivers without code modification

such that the storage server can utilize NVMe storage which is one of the state-of-art hard-

ware. The evaluation demonstrated that the storage server performs reasonably compared

with Linux.

Providing isolation of operating systems components has been generally recognized as a

performance penalty. For better security, the existing operating systems trade-off the per-

formance. Due to the trade-off, the commodity OSs prioritized better performance and
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opted not to have isolation in their components with sacrificing security. From the works in

this dissertation, however, we learned that performance and security are not contradicting

things, and they are things that can be taken simultaneously.

11.1 Proposed Post-Preliminary Exam Work

We propose four directions for the post-preliminary exam work.

11.1.1 Transparent Fault-Tolerant Storage Server

In this dissertation, we introduce a storage server in LibrettOS. The storage server is built

on a rumprun unikernel such that strong isolation is provided by the virtualization. The

strong isolation brings security benefits because security vulnerability in the storage system

component does not affect the other parts of the system, unlike the monolithic kernel design.

Furthermore, the isolation also brings enhanced reliability. Even if the storage system fails

for any reason, it can be restored by restarting the storage server. However, since the system

has to guarantee that storage I/Os are complete, flying data (data being transmitted) should

not be lost.

For storage I/O fault tolerance, storage multipath was introduced and adopted to systems

such as Linux and VMWare ESXi virtual machine monitor. The technique of storage mul-

tipath defines more than one physical path between computer system components such as

CPU and storage devices through buses, controllers, switches, and bridge devices. If one

path fails, the system routes the storage I/O to other paths to tolerate the failure. This

technique has a downside: frying data can not be restored. Data that has already been

transmitted cannot be recovered even if I/O is routed to another path.

Transparent fault tolerance for storage can be achieved by leveraging TCP/IP’s fault toler-

ance [119]. TCP/IP resends the same packets when the acknowledges do not come within a



set of time windows. Like TCP/IP, the frontend driver resends block I/O requests if it does

not receive the I/O responses within a time window.

There are several challenges associate with this proposed work. One of them is related to

performance. As the frontend driver resends I/O requests, the latency of read and write op-

erations increases and this significantly downgrades the throughput. The time window has

to be carefully determined in order that reasonable performance can be achieved. Another

challenge is asynchronous storage I/O. The asynchronous storage I/O, such as asynchronous

block write returns right after sending the I/O request. There can be a case that an asyn-

chronous write returns even though the I/O request fails.

11.1.2 Transparent Fault-Tolerant File System Server

Since the file system is one of the critical system components in OSs, isolating the file system

for security enhancement would be interesting post-preliminary work. Aside from the security

benefit, an isolated file system server can bring reliability improvement by supporting fault

tolerance. When any fault occurs in the file system, the file system can be recovered by

restarting the file system server. Unlike that the fault in the file system requires the entire

system to be rebooted, the file system server does not affect the system for recovery.

Unfortunately, data or even metadata could be lost even after the file system recovery because

most of them reside in volatile memory. To address the problem, several approaches such

as journaling, have been addressed. Furthermore, Chidambaram et al. presented Optimistic

Crash Consistency [20] which is a new approach to crash consistency in journaling file systems

achieving both a high-level consistency and excellent performance.

These prior works focus on recovery from the file system crash, but none of them are trans-

parent to applications. Therefore, we propose a transparent fault-tolerant file system server

for the post-preliminary work. Applications are not aware of any faults that occurred in the



file system server. The file system server should recover from any crash, and not lose any

data issued by the applications.

11.1.3 Design and Implementation of Other Servers

Another large part of the system components is device drivers. Device drivers are prone to

have security vulnerabilities because they expose large attach surfaces. Therefore, providing

isolation to the device drivers can give promising security benefits to systems. Device drivers

of USB, sound device, graphic process unit, console device, and so on can be built as device

driver servers.

The device driver server can offer potential feasibility of hardware resource disaggregation,

or CPU offloading. As a recent trend of hardware devices incorporating more processing

power, it enables the system servers to run on the devices’ controller and to offload the OS

logic from the CPU [95]. Consequently, this provides strong isolation of the device drivers.

For the post-preliminary work, we suggest a device server with enhanced security and relia-

bility, and better performance by offloading execution of device drivers from the CPU.

11.1.4 Fine-grained Intra-Unikernel Isolation

We introduce the technique for intra-unikernel isolation by leveraging Intel MPK feature.

We separate the unsafe kernel code from the safe kernel code, and also user code from the

kernel code with our isolation technique. Nonetheless, we believe that isolation provision

within a user code can be an addition to better security. For example, a formally verified

cryptographic library is unlikely to contain vulnerabilities. However, a vulnerability in a user-

facing HTTP parsing module (such as CVE2013-2028 [2] in NGINX) can leak the sensitive

data that the cryptographic library manipulates (e.g., crpyto keys) when they are in the

same user memory address space.



Prior works suggested techniques of intra-process isolation. ELFbac [8] suggested fine-

grained intra-process isolation by reusing existing ELF ABI infrastructure. CHERI [113]

proposed an extension of conventional processor Intruction-Set Architecutres (ISAs) featur-

ing architectural capabilities to provide fine-grained memory protection and highly scalable

software compartmentalization.

We anticipate that these techniques provide fine-grained isolation within application code in

unikernels, therefore, propose it as the post-preliminary work.
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