
Formal Verification of Memory Preservation for x86-64 Assembly
via Proof Generation

Joshua Alexander Bockenek

Preliminary Exam

Doctor of Philosophy
in

Computer Engineering

Binoy Ravindran, Chair
Freek Verbeek

Patrick R. Schaumont
Michael S. Hsiao
Changhee Jung

September 2, 2019
Blacksburg, Virginia

Keywords: Formal Verification, x86-64 Assembly, Interactive Theorem Proving, Proof
Generation, Memory Preservation

Copyright 2019, Joshua Alexander Bockenek

Formal Verification of Memory Preservation for x86-64 Assembly
via Proof Generation

Joshua Alexander Bockenek

(ABSTRACT)

Formal characterization of the memory used by a program is an important basis for security
analyses and compositional verification. Proving that that program only modifies memory
within specified regions, the property of memory preservation, is an important aspect of
that. However, accurately proving memory preservation requires operating on the assembly
level due to the semantic gap between high-level languages and the code that processors
actually execute. This is unfortunate, as verifying programs on the assembly level is difficult.
Automated methods, such as model checking, would not be able to handle many interesting
functions due to the undecidability of memory preservation. Fully-interactive methods do
not scale well either. The solution is to combine proof generation with interactive theorem
proving in a semi-automated manner : let some untrusted tool extract as much information
as it can from the functions under test and then generate all the necessary proofs to be
completed in a theorem prover.

The first contribution of this dissertation is a control-flow-driven verification approach
with mostly manual invariant specification at automatically-selected cutpoints. The memory
regions and any additional preconditions must also be determined manually. This methodology
was applied to 63 functions from the HermitCore unikernel library, including one recursive
one, covering 2379 assembly instructions.

The second contribution of this dissertation is a syntax-driven verification approach with
fully-automated invariant and memory region generation. It produces formal memory usage
certificates that can be verified in Isabelle/HOL with minimal effort, the main manual work
being weakening any loop invariants. This was successfully applied to 251 functions from the
Xen hypervisor project, covering a total of 12 252 assembly instructions.

Acknowledgments

This work was supported in part by the Office of Naval Research (ONR) under grant
N00014-17-1-2297 and the Naval Sea Systems Command (NAVSEA)/the Naval Engineering
Education Consortium (NEEC) under grant N00174-16-C-0018. Any opinions, findings, and
conclusions or recommendations expressed in this dissertation are those of the author and do
not necessarily reflect the views of ONR or NAVSEA/NEEC.

iii

iv

Contents

List of Figures ix

List of Tables xi

List of Algorithms xiii

List of Listings xv

Acronyms xvii

Nomenclature xix

1 Introduction 1
1.1 Motivation . 1

1.1.1 Security . 2
1.1.2 Composition . 2
1.1.3 Concurrency . 3

1.2 Challenges . 3
1.3 Assembly-Level Verification . 3

1.3.1 Challenges . 4
1.3.2 Current Approaches to Assembly Verification 5

1.4 Contributions . 5
1.4.1 Control-Flow-Driven Verification . 6
1.4.2 Syntax-Driven Verification . 7

1.5 Organization of Dissertation . 7

2 Related Work 9
2.1 Assembly-Level Verification . 9
2.2 Hardware Verification . 12
2.3 Integrated Assembly-Level Verification Efforts 13
2.4 Verified Compilation . 14
2.5 Non-Formal Static Analysis . 15
2.6 Summary . 16

3 Background 19

v

3.1 Formal Methods . 19
3.1.1 Symbolic Execution . 19
3.1.2 Hoare Logic . 19
3.1.3 Theorem Proving . 20

3.2 Assembly Language . 21
3.2.1 The x86-64 Instruction Set Architecture 22
3.2.2 The System V AMD64 Application Binary Interface 27
3.2.3 The GNU Compiler Collection (GCC) 28
3.2.4 Basic Blocks . 28
3.2.5 Tail Call Optimization . 28

3.3 Summary . 29

4 Symbolic Execution 31
4.1 Machine Model . 32

4.1.1 Memory Model . 32
4.1.2 Restrictions of the Model . 33

4.2 Rewrite Rules . 33
4.2.1 Memory Aliasing . 34
4.2.2 Rewrite Rules for Memory . 34

4.3 Summary . 38

5 Control-Flow-Driven Verification 41
5.1 Overview of Methodology . 42
5.2 Formal Definitions . 42

5.2.1 Symbolic Execution for CFG-Driven Verification 42
5.2.2 Hoare Triples for Memory Preservation 43
5.2.3 Floyd Invariant Foundation . 43
5.2.4 Definition of Memory Preservation 45

5.3 Composition . 45
5.3.1 Intra-Function . 45
5.3.2 Function Calls . 46

5.4 Examples . 47
5.4.1 Non-recursive Loop Example: pow2 47
5.4.2 Recursion: Factorial . 48

5.5 Application: HermitCore . 53
5.5.1 Functions Analyzed . 53

5.6 On Usability . 54
5.6.1 Defining the Invariant . 55
5.6.2 Strengthening the Precondition . 56
5.6.3 Finishing the Proof . 56

5.7 Summary . 56

6 Syntax-Driven Verification 57
6.1 FMUC Generation . 57

6.1.1 Control Flow Extraction . 58

vi

6.1.2 Symbolic Execution for Generation 60
6.1.3 Invariant Generation . 62

6.2 FMUC Verification . 64
6.2.1 Syntactic Control Flow in Isabelle/HOL 65
6.2.2 Symbolic Execution for Verification 65
6.2.3 Per-Block Verification . 66
6.2.4 Function Body Verification . 67
6.2.5 Composition . 71

6.3 Full Example . 73
6.4 Application: Xen Project . 75
6.5 Summary . 77

7 Conclusions 79
7.1 Contributions Revisited . 79

7.1.1 Control-Flow-Driven Verification . 79
7.1.2 Syntax-Driven Verification . 80

7.2 Proposed Post-Preliminary Exam Work . 80
7.2.1 Strengthen Invariants . 80
7.2.2 Model a More Realistic Memory Model 81

Bibliography 83

Index 97

vii

viii

List of Figures

5.1 Overview of control-flow-driven memory preservation verification 42
5.2 Floyd invariant for pow2 in CFG form . 49
5.3 Floyd invariant for factorial in CFG form . 50
5.4 Floyd invariants for the described case study functions in CFG form 55

6.1 Overview of FMUC generation . 58
6.2 Example of control flow extraction . 60
6.3 Example of code duplication . 61
6.4 Overview of FMUC verification . 64
6.5 Hoare rules for memory preservation . 68
6.6 Frame rule for composition of memory usage 72
6.7 Application of entire methodology on example 74
6.8 Analyzed Xen functions compared to unverified features 76

ix

x

List of Tables

2.1 Overview of related assembly verification and other work 17

3.1 Method expressions . 21
3.2 The x86-64 registers (excluding SIMD) . 24
3.3 Flags for x86-64 . 25

5.1 Summary of functions analyzed . 54

6.1 Verified Xen Functions . 76

xi

xii

List of Algorithms

4.1 Symbolically reading from memory . 36

6.2 Invariant propagation . 63

xiii

xiv

List of Listings

5.1 Simple pseudocode . 46
5.2 pow2 in C . 48
5.3 pow2 in x86-64 assembly . 49
5.4 Factorial in C . 50
5.5 x86-64 assembly of factorial example . 51

6.1 VCG step method . 70
6.2 Main VCG method . 70
6.3 Alternate step method for Resume clauses . 70
6.4 VCG method for loops . 71

xv

xvi

Acronyms

ABI application binary interface

AES Advanced Encryption Standard

ASL ARM Specification Language

BAP the Binary Analysis Platform

CAN Controller Area Network

CFG control flow graph

CFI control-flow integrity

CISC complex instruction set computer

CPU central processing unit

DiL decompilation into logic

FDL functional description language

FMUC formal memory usage certificate

GCC the GNU Compiler Collection

HOL higher-order logic

ISA instruction set architecture

ITP interactive theorem proving

LFP least fixed point

MRR memory region relation

MSB most significant bit

NAVSEA the Naval Sea Systems Command

NEEC the Naval Engineering Education Consortium

Nqthm the Boyer-Moore theorem prover

ONR the Office of Naval Research

xvii

OS operating system

QEMU Quick Emulator

RISC reduced instruction set computer

RTOS real-time operating system

SCF syntactic control flow

SIMD single instruction, multiple data

SLOC source lines of code

SMT satisfiability modulo theories

SPADE the Southampton Program Analysis Development Environment

STP Simple Theorem Prover

TCB trusted computing base

VC verification condition

VCG verification condition generator

VM virtual machine

xviii

Nomenclature

ASP Type of assignments

β Type of basic blocks

© Denotes an arbitrary binary operator

⊥ Used here to represent an empty value, such as the result of calling a partial function
with a value it does not have an actual result for or in general the None value of an
optional type

• Indicates bitstring concatenation

≡ Indicates term equivalence; the term on the left may be replaced by the term on the
right

⊥E Indicates exceptional state

ESP Type of expressions

� Performs unsigned right shift when used with word values

� Performs left shift when used with word values

B Type of boolean values, True and False

W Type of 64-bit words

N Type of natural numbers

Φ Type of branching conditions

φ Denotes a generated invariant
∏ Product of a sequence of terms; multiplication equivalent of ∑
⊆ Indicates subset relation

xix

〈h, l〉w Indicates taking bits in word w from bit l to bit h using 0-indexing

SP Type of state parts (regions, flags, and registers)

A Type of instructions

L Type of instruction addresses in a program; a 64-bit word

S Type representing program state; an Isabelle record

xx

Chapter 1

Introduction

Proving that a non-trivial program has no bugs is not an easy task. As technology continues
to improve, software will continue to increase in complexity. Providing methods to ease the
work of reasoning over programs is a necessity in the modern world. This is particularly
important for programs that are intended for high-reliability applications, such as avionics,
medical equipment, or other safety-critical systems. Formal verification allows reasoning over
programs with a high degree of assurance.

This dissertation introduces the property of memory preservation as well as methodologies
for formally verifying this property over real-world programs. Memory preservation expresses
that the memory a program writes to is bounded by prespecified regions.

Memory preservation cannot be proven fully automatically as it is an undecidable property,
mandating an interactive but scalable approach. It also must be proven at the assembly level
as it relies on concrete memory layout.

Formal verification of software has been an active research field for decades. This disser-
tation aims to provide a formal verification method that is specifically tailored to memory
preservation. This allows more automation and scalability. For example, we have shown that
we can formally verify approximately 12 000 lines of assembly code obtained by decompiling
binaries of the XEN hypervisor with minimal user interaction. To the best of our knowledge,
there exists no current state-of-the-art method that specifically aims at formal verification of
memory preservation.

1.1 Motivation

As a basic property, memory preservation has potential applications to security analyses,
compositional reasoning, and even concurrency. These potential applications are described in
more detail below.

1

2 Chapter 1. Introduction

1.1.1 Security

Unbounded memory usage can lead to vulnerabilities such as buffer overflows and data
leakage. One example of such a vulnerability would be 2014’s Heartbleed [63]. Heartbleed
was caused by a lack of bounds checking on a string array requested as output as part of
a “heartbeat” message. This, combined with a custom memory manager that also had no
security protections against out-of-bounds memory accesses, lead to potential leakage of
sensitive data such as passwords and encryption keys. Memory preservation could serve as a
foundation for formal security analyses that could be used to expose vulnerabilities involving
malicious writes.

Another important property that memory preservation could help with is control-flow integrity
(CFI) [1]. CFI ensures that software execution follows a predetermined control flow graph
(CFG) using static analysis and runtime checks. At a minimum, this requires proving that
a program cannot overwrite its stack pointer or that a called function does not overwrite
local variables of its caller. In other words, it must be proven that the memory writes of a
program are confined to prespecified regions, which is exactly what memory preservation
states. This can aid in avoiding return-oriented programming attacks without excessive
runtime overhead.

The property of noninterference is also a useful one for security. On a high level, it states
that a group of users using a certain set of commands does not interfere with another group
of users if the the first group’s actions have no effect on what the second group of users
can see [59, 108]. On a functional level, that could be interpreted as a statement that a
non-interfering function does not modify any memory that is accessed by the function not
being interfered with. Memory preservation is specifically about showing that all memory
outside of specific regions is not modified by the function or functions associated with those
regions, so proving that the region sets for two functions are disjoint would essentially prove
noninterference for those two functions.1

1.1.2 Composition

Scalability in verification is only feasible with composition; proofs of functional correctness
or some other property over a large suite of software require decomposing that suite into
manageable chunks. Separation logic provides a frame rule that supports such decomposition
[75, 94, 104]. In words, the frame rule states that, if a program or program fragment can
be confined to a certain part of a state, properties of that program or program fragment
carry over when used as part of a larger system involving that state. Memory preservation
allows for discharging the most involved part of the frame rule, at least in terms of individual
assembly functions. That is, it shows that the memory preservation of those functions is
constrained to specific regions in memory. This could then serve as a basis for a larger proof
effort over multi-function assembly programs.

1A weaker property would be showing that one of the functions does not write to any of the memory
regions read by the other, but that would actually be harder as we do not currently differentiate between
regions that are read and written.

1.2. Challenges 3

1.1.3 Concurrency

Reasoning over concurrent programs is complicated due to the potential interactions between
threads. While there are ways of handling such interactions in a structured manner via kernel-
or library-provided inter-process communication, one method commonly used for the sake of
efficiency is shared memory. Shared memory, in the context of this work, refers to threads or
processes sharing either a full memory space or portions of one (via memory mapping) that
can be written to and read from freely by any thread or process with access to it. Usage of
shared memory can result in unintended interactions between threads. Memory preservation
could be adapted to show the absence of such interactions by proving that multiple threads
only write to specifically-allowed regions of shared memory. Doing so would, of course, require
a proper model of concurrency, which is out of scope of this dissertation.

1.2 Challenges

A fully-automated verification effort to prove memory preservation would be ideal, but it is
not a feasible approach [97]. As per Rice’s theorem [105], memory preservation is ultimately
an undecidable property. One alternative would be to use interactive theorem proving (ITP),
but that does not scale well either due to the amount of intricate user interaction involved.
This dissertation proposes a semi-automated approach. It uses an ITP environment, but with
code generation to generate as much of the proof code as possible.

1.3 Assembly-Level Verification

Properties that reason over the concrete memory used by a program, such as memory
preservation, cannot be satisfactorily expressed on the source-code level. This is because
even programs in a relatively low-level language like C have abstractions on memory for
local variables and function calls. How and where that memory is allocated may be compiler,
application binary interface (ABI), and instruction set architecture (ISA)-specific. It can
even depend on what compiler options are in use, including the level of optimization. While
one way of resolving that issue would be to choose a specific compiler and provide a formal
analysis of how it arranges memory (or write a compiler to do so), that method places
restrictions on the build process. Targeting assembly or machine code directly, as done in this
dissertation, allows bypassing the build process, which also opens the door for verification of
legacy code.

Example 1.1. As a further illustration, consider formulating a property that a function
cannot overwrite its own return address. Doing so would require knowledge of the layout of the
stack, including the values of the stack and frame pointers, thus making it an assembly-level
property.

As a side benefit, targeting assembly means that there is no need to trust all the steps between

4 Chapter 1. Introduction

writing source code and obtaining a binary from it. Doing so reduces the trusted computing
base (TCB) without needing to use a compiler that has been formally proven to maintain the
semantics of the source code in the binaries it produces.

1.3.1 Challenges

The biggest challenge in assembly-level verification is the semantic gap between compiled
and source code. Higher-level languages hide details of their implementation behind layers of
abstraction, which makes it easier to reason about them on that level but makes it harder
to formally show equivalence with the semantics of to lower abstraction levels. Meanwhile,
assembly languages are close to direct interfaces with their corresponding ISAs, having
minimal differences in semantics but not being easy to reason about directly.

As an example of the semantic gap, assembly code generally lacks the structured control flow
found in languages on a higher level of extraction. Instead, all control flow on the assembly
level is performed using conditional or unconditional branches, either to a predetermined
location or to a calculated label.

A further example would be source code containing division operations being compiled to run
on a processor that does not provide hardware division. Many central processing units (CPUs)
for embedded systems lack support for hardware division as efficient division algorithms
require a lot of circuitry. For such processors, runtime division must be calculated using an
algorithm implemented in assembly rather than via a specific instruction.

Even the basic concept of numeric types is minimal on the assembly level, much less more
abstract data types like lists or trees. While most ISAs do have different instructions for
signed versus unsigned integer arithmetic, as well as distinct instructions for floating-point
operations, individual values in memory have no type. They are merely lists of bytes starting
at some address, and even the number of bytes and the address to read from or write to can
be variable. A user could go as far as supplying the result of a floating-point computation as
the address operand of an instruction that loads or stores memory. Historically, there have
been computers that associated type information with memory locations in hardware [49, 50,
121], but we do not have that luxury on typical modern systems.

An additional issue with assembly, and the one most significant for this dissertation, lies in
the simplicity of the user-exposed memory model. The vast majority of high-level, structured
languages with scoping prevent function calls from accessing the local variables of other calls
without significant effort or explicit notation, but the same is not true for assembly. An
assembly instruction that operates on memory can refer to any address within range of its
address operands even if it is not supposed to. Most modern ISAs do provide some form of
memory protection, but those generally rely on runtime detection of invalid accesses and are
often not fine-grained enough for reasoning about individual stack frames or local variables.
Any verification effort that wishes to reason about low-level memory properties must provide
its own abstractions and assumptions on layout.

1.4. Contributions 5

1.3.2 Current Approaches to Assembly Verification

In 2014, Goel [57] and Goel et al. [58] produced formal semantics for most user-mode x86-
64 instructions as well as for commonly-used system calls. That work allows mechanized
reasoning over compiled programs in the ACL2 theorem prover [71].

Soon after, Tan et al. [120] introduced a logic framework called AUSPICE for automated
verification of safety properties on the assembly level. AUSPICE took six hours to execute
on 533 instructions, but was applicable to unmodified code. Our methodology in Chapter 6
is also applicable to unmodified code, as long as that code is assembly.

More recently, Baumann et al. [5] provided an ARMv8-based hypervisor that was formally
verified on the machine code level to ensure isolation of guest operating systems (OSes). That
work was based on an earlier one for an ARMv7 separation kernel, PROSPER [36, 37].

Additionally, earlier this year, Fromherz et al. [54] embedded a subset of the x86-64 ISA in
the functional, verification-oriented language F∗ [46]. This was done in order to perform a
proof of correctness over the commonly-used cryptographic routine AES-GCM. Their usage
of a verification condition generator (VCG) is similar to ours in Chapter 6, but ours did
not need to be separately formally verified as we implemented it with proven-true Hoare
rules.

1.4 Contributions

This dissertation presents two formal approaches to per-function verification of the assembly-
level property we call memory preservation: control-flow-driven verification and syntax-driven
verification. Both approaches use some form of control-flow analysis over functions in x86-64
assembly to generate incomplete proofs. Those proofs are then loaded into the interactive
theorem prover Isabelle/HOL and completed there. The proof strategies for both approaches
involve symbolic execution of the underlying assembly code [72], albeit in different ways.

The main differences between the two approaches lie in their degrees of automation, the
strengths of their invariants, and how they perform symbolic execution. The first approach,
control-flow-driven verification, requires significantly more user user input but has the potential
for much stronger invariants. Meanwhile, the second approach, syntax-driven verification,
has a significantly higher level of proof automation via the generation of formal memory
usage certificates (FMUCs) but is not as suited for stronger invariant production. Symbolic
execution is also more efficient in the control-flow-driven approach as it more closely follows
the structure of the function’s CFG. In contrast, the syntax-driven approach must deal with
operating on a restricted set of control flow constructs, which can result in extra symbolic
execution.

6 Chapter 1. Introduction

1.4.1 Control-Flow-Driven Verification

This methodology for verification of memory preservation relies on treating function bodies as
CFGs with basic blocks as the nodes, much as compilers do when performing their analyses.
In order to reason about the CFGs, they are annotated with predicates on state at specific
locations, between which the program will be symbolically executed. While it is possible to
reason about full functional correctness with this methodology, doing so takes a significant
amount of effort due to the very low level of abstraction assembly provides, even with
proven-correct formal simplification rules in Isabelle. Because of this, we focused on the
aforementioned property of memory preservation.

In our model, memory usage is formulated as a set of regions that start at some address and
have a specific size in bytes. We do not currently differentiate between regions for writes and
regions for reads, though doing so is a possibility in the future. Proving memory preservation
requires performing symbolic execution on the underlying assembly instructions and showing
that no regions beyond those needed to complete the proof are modified.

In order to reason about that memory usage so we can prove memory preservation in a
theorem prover, the structure of the proof must be extracted from the assembly programs.
For that purpose, our code generation tool for this work produces the skeleton of a proof
based on the control flow of the analyzed programs. This is achieved using off-the-shelf
tools.

That proof skeleon specifies where the program should be annotated and provides some initial
conditions based on register values. It also provides the proof steps to properly perform
symbolic execution and starts the user off with a basic set of regions determined from variables
in the stack frame. The two steps remaining, however, are up to the user. Those steps
are formulating any remaining memory regions to successfully complete symbolic execution
and fleshing out the annotations on state so that the symbolic execution of later blocks can
continue from that of earlier ones.

The control-flow-driven methodology was applied to 63 functions extracted from the Her-
mitCore [78] unikernel library [82], covering 760 source lines of code (SLOC) or over 2379
assembly instructions. Of those functions, 18 had loops and 33 had subcalls. Optimized
variants were also verified for 12 of the functions involved, resulting in 75 functions verified.
There was even one function that featured recursion, which turned out to be the most
challenging function to handle. Other than the recursive function, the most challenging ones
to handle were the ones with loops. Formulating annotations that must hold for all loop
iterations is not easy when a significant amount of memory operations are performed.

The closest related work to this, that of Matthews et al. [85], resulted in the verification
of only 20 functions, with 631 assembly-level instructions in total. That is only 26.67 % of
the functions, or under 26.5 % of the instructions, that we verified here. On top of that, the
ISAs they worked with are not as low-level as the x86-64 ISA. While they verified functional
correctness instead of a weaker property like memory preservation, they also specifically
reduced the complexity of the most complicated set of functions they verified by using a
simple xor cipher instead of a proper block cipher.

1.5. Organization of Dissertation 7

1.4.2 Syntax-Driven Verification

Taking our experiences from the control-flow-driven verification work into account, we chose
a slightly different path for the second verification work presented in this dissertation. This
approach focuses on relating symbolically-executed basic blocks with a syntactic representation
of program control flow. It also involves significantly more information generation than the
previously-discussed approach.

Abstracting away from the concrete control flow to a more structured syntax increases the
capacity for automation as it allows for the development of a set of Hoare rules over the
syntactic control flow [65]. By developing and using a set of such formal rules, we were able
to restrict symbolic execution to the level of individual basic blocks and then use those rules
to do the rest of the work. This greatly simplified our proof strategies for proving memory
preservation.

The change in methodology alone would not have been enough, however. As stated, we
also generate much more information. That additional information consists of the full set of
memory regions for each basic block, the corresponding memory region relations (MRRs), and
the block’s preconditions and postconditions. Having that information generated for them
greatly reduces the work an end user must put in compared to our initial approach.

Unlike the previous work, this one was applied to assembly obtained by running objdump on
three unmodified binaries resulting from the Xen Project hypervisor build process [29]. Of
the 352 functions present in those binaries, 251 or 71 % were verified. Ultimately, over 12 252
optimized instructions were covered with only 1047 manual lines of proof required. That is
an approximate ratio of one manual line of proof for every 12 instructions handled, or an
average of 16 manual lines of proof for every loop handled, of which there were 65.

To the best of my knowledge, this is the first work to achieve that degree of coverage for
optimized x86-64 binaries produced by production code. While Tan et al. [120] produced a
fully-automated methodology for binary analysis, it was much slower than our approach here,
meaning they would take longer to cover the same amount of functions even though they
had more automation. Under normal circumstances, this approach can complete the proofs
for two functions with a total of 97 assembly instructions in less than ten minutes. That
is 9.7 insts/min compared to 1.48 insts/min for AUSPICE, 6.55 times as fast. We did have
some functions that took an overly long period of time due to the suboptimality of syntactic
control flow with respect to minimizing symbolic execution, but those were atypical.

1.5 Organization of Dissertation

Following this introduction in Chapter 2 is a review of tools and work related to the field of
assembly-level verification and software correctness in general. Domain-specific information
necessary to understand the work and terminology can then be found in Chapter 3. For
an in-depth exploration of the basis for the symbolic execution engines and formal memory

8 Chapter 1. Introduction

reasoning used by the contributions of this work, see Chapter 4. After that, the control-
flow-driven approach to verification of memory preservation mentioned above is presented
in Chapter 5 while the syntax-driven approach is presented in Chapter 6. Finally, my
dissertation wraps up in Chapter 7, which includes a discussion of possible post-preliminary
exam work.

Chapter 2

Related Work

Verification of assembly has been an active field of research for decades. This chapter covers
some of that history.

Up first in Section 2.1 are some previous formal verification efforts that target assembly.
Following that is work on a lower level, verification of the hardware that runs machine code,
in Section 2.2. After that is work in which assembly verification played a role in a larger
verification context, Section 2.3, and then verified compilation and static analysis tools are
discussed in Sections 2.4 and 2.5. Table 2.1 provides an overview of the assembly, hardware,
and integrated projects. It also includes the works presented in this dissertation.

2.1 Assembly-Level Verification

Clutterbuck and Carré [31] performed formal verification of assembly programs using SPACE-
8080, a verifiable, analyzable subset of the Intel 8080 ISA. Their work used the Southampton
Program Analysis Development Environment (SPADE) [25], a set of software tools for “the
efficient development, analysis, and formal verification of high-integrity software”. SPADE
provides a functional description language (FDL) for modeling programs in order to analyze
and formally verify them using a VCG, proof checker, and symbolic interpreter. They used
automatic translation to model their SPACE-8080 program in FDL, and their verification
methodology used the same kind of annotated control-flow analysis as our control-flow-driven
approach presented in Chapter 5 does, with additional assertions on state to avoid errors and
stronger conditions in order to prove functinoa correctness. They also provided rewrite rules
that described the semantics of the formal models in SPADE. Unlike the work detailed in
Chapter 5, however, they only covered a single 33-instruction function with the verification
methodology they presented.

Another usage of SPADE for a more in-depth verification of assembly was in the correctness
proof of fuel control code for a Rolls-Royce jet engine [95]. Once again, it involved formulating
a verification-friendly model of the Z8002 ISA in SPADE, the development of a Prolog
translator from Z8002 assembly to FDL, and the formalization of written specifications into

9

10 Chapter 2. Related Work

proper pre- and postconditions in SPADE. SPADE’s proof checker was then used to validate
the correctness of the translated control code. While they assumedly covered many more
instructions than the previous SPADE work did, the authors did not go into detail on the
amount of work that was actually done. The only number given was that the specifications
for about 10 % of the code modules under test were clarified and one module received a code
fix to improve its performance.

Similarly, Yu and Boyer [20, 135] presented operational semantics and mechanized reasoning
for approximately 80 % of the instructions of the MC68020 microprocessor, over 85. They
implemented those semantics and mechanized their approach in the Boyer-Moore theorem
prover (Nqthm) [19], a precursor to the theorem prover ACL2 [71]. They then applied
their mechanized reasoning to check functional correctness for a binary search, quicksort, a
standard C string library, and others. These early efforts required significant interaction, as
Yu and Boyer required over 19 000 lines of manually written proof to verify approximately
900 assembly instructions. Compare this to the 1047 lines of manual proof required to prove
memory preservation over 12 252 assembly instructions. Admittedly, they were verifying
stronger properties, which would greatly increase the amount of work required for verification,
but even then it’s a significant difference.

Following that, Matthews et al. [85] targeted a simple machine model called TINY as well as
the M5 operational model of Java virtual machine bitcode. Their approach for functional
correctness, implemented in ACL2, utilized symbolic execution of operational semantics over
code annotated with manually written invariants in order to generate verification conditions
(VCs) and then discharge them. They even supported compositionality by verifying subcalls
individually. Both of the assembly-style languages they tested with feature a stack for handling
scratch variables rather than a register file as x86, ARM, and most other mainstream ISAs do.
The case studies they verified were an implementation of the Fibonacci sequence, a factorial
function, and functions for CBC-mode encryption and decryption. In total, they covered 631
assembly instructions, less than that handled by either of the methodologies presented in this
dissertation. Of course, they were targeting a stronger property than either of those works,
but they also did not perform any significant work to automate their approach. All in all,
however, this work is the closest to the control-flow-driven approach presented in Chapter 5
of any of the works presented in this chapter, as they even implemented a version in Isabelle.
Their Isabelle version did not support compositionality, however.

Additionally, Goel et al. presented an approach for modeling and verifying non-deterministic
programs on the binary level [57, 58]. As with Matthews et al. [85], their work was implemented
in ACL2. In addition to formulating the semantics of most user-mode x86 instructions, they
provided semantics for common system calls. System call semantics increase the spread of
programs that can be fully verified. Their work was applied to multiple small case studies,
including a word count program and two kernel-mode memory copying examples.

Ultimately, the main difference between the above-mentioned existing approaches and the
methodologies presented in this dissertation lies in the degree of automation. As stated previ-
ously, ITP over semantics of assembly instructions does not scale under normal circumstances.
This is again due to the amount of intricate user interaction required.

2.1. Assembly-Level Verification 11

Fully automated approaches to formal verification, however, do not necessarily scale either.
The recent automated approach AUSPICE provided by Tan et al. [120] takes about 6 hours
to run on a 533-instruction string search algorithm. This is despite the fact that, similar to
our approaches, they were targeting weaker safety properties rather than going for functional
correctness. As another similarity to our approach in Chapter 6, they too used a full set of
Hoare rules in their analysis.

Though it is not a verification methodology by itself, there is also decompilation into logic
(DiL) [89, 90]. Developed by Myreen et al. in the HOL4 theorem prover [118], DiL uses
operational semantics of machine code to lift programs into a functional form. That functional
form can then be used in a Hoare logic framework for program analysis [88]. It formally
covers the gap between machine code and a higher-order logic (HOL) model and allows for
verification of properties in a theorem prover that utilizes that model. DiL has been used for
both ARM and x86 ISA machine models and applied to various large examples, including
benchmarks such as a garbage collector as well as the Skein hash function. It has even been
used as a component in a binary-level verification methodology over the seL4 microkernel
[113].

Also, Feng et al. [47, 48] presented stack abstractions for modular verification of assembly
code in the Coq theorem prover [30]. Their work allows for integration of various proof-
carrying code systems [91]. As with the work presented in Chapter 6, it utilizes a Hoare-style
framework for its verification. The authors applied their work to multiple example functions,
such as two factorial implementations as well as setjmp and longjmp. In contrast to the
approach presented in Chapter 6, though not that in Chapter 5, manual annotations are
required to provide information regarding invariants and memory layout.

Schlich [110] worked on the development of a model checker for analysis of microcontroller
assembly, [mc]square. Implemented in Java and supporting several microcontroller ISAs,
it uses multiple methods of state space reduction in order to avoid state space explosion as
much as possible. While it was applied to multiple case studies, some of those case studies
were only to analyze the effectiveness of the various abstraction techniques used for state
space reduction.

The most relevant case study to this dissertation was its application to software compiled
for an automotive microcontroller [111]. The three programs they focused on for their case
study were designed to record speed measurements from sensors on four wheels, calculate
the actual speed, and then transmit it over a Controller Area Network (CAN) bus.1 Some of
the programs required simplification to be checkable, so for consistency they applied, or at
least attempted to apply, the same simplifications to all three programs. They did what they
could to remove sends over the CAN bus and tried to focus on the speed signal from just one
wheel rather than all four. Ultimately, they were able to reason about all three programs
and prove both functional and non-functional properties of those programs. On average they
covered around 700 lines of C or 2666 assembly instructions. In terms of the works presented
in this dissertation, the case study on HermitCore in Section 5.5 did involve isolating the
functions under test before compiling them and covered less instructions. By contrast, the

1A CAN bus is a standard bus for electronic communications in automotive applications.

12 Chapter 2. Related Work

analyzed Xen functions in Section 6.4 were handled without any modification whatsoever to
the Xen build process and covered even more instructions.

Brauer et al. [21] intially performed static analysis of stack bounds for the Atmel ATmega16
and Intel MCS-51 microcontrollers in order to verify a lack of stack overflows. Their work was
applied to eight programs, four compiled for each microcontroller. The functions compiled for
the ATmega16 ISA had previously been used to evaluate the effectiveness of [mc]square.
They then embedded their static analysis in [mc]square as a means to improve the
accuracy of dead variable reduction, which [mc]square uses for state space reduction.
While this stack safety approach is similar in focus to the memory preservation works I
present here, the scope is much smaller. Their focus was specifically on stack memory rather
than memory in general.

Earlier this year, Fromherz et al. [54] embedded a subset of the x86-64 ISA in the functional,
verification-oriented language F∗ [46]. This was done in order to prove commonly-used
crytographic routines that mix C with assembly for performance reasons are secure from
information leakage. The cryptographic routines they applied their work to were Poly1305-
Advanced Encryption Standard (AES) [6] and AES-Galois/Counter Mode [43]. Their aim
was to use F∗’s dependent type system to run a verified VCG during type checking, with
the generated VCs then being supplied to a satisfiability modulo theories (SMT) solver.
The conditions on state to generate the VCs were expressed using Vale, a language for
assembly verification [17]. This was done in the style of proof by reflection [7]. The VCG
itself, QuickCode, was formally proven sound in F∗ as well. They measured performance of
their verified algorithms, as one of them could be transpiled to C. They also measured the
performance of various versions of their VCG, and found that optimizing the SMT queries
did improve performance significantly.

Unlike our works in Chapters 5 and 6, the authors of this paper had to do extra reasoning
to ensure the C and assembly code models were interoperable. As we operated directly
on full assembly, we did not have to worry about that kind of interfacing. Both this work
and the work presented in Chapter 6 used an explicit VCG, but ours was proven correct
by its Isabelle/HOL definitions; we did not have to perform any additional work to ensure
correctness of the methodology. Of course, as we implemented ours in an interactive theorem
prover, we could guide the VC generation and discharging as needed.

2.2 Hardware Verification

On a level lower than the assembly code level, or even the machine code level, is the work
done by hardware designers and testers to verify the products that run those codes. Quite
often this is done with model checkers.

For example, ARM recently released several of their ISAs in a machine-parsable, executable
format called ARM Specification Language (ASL) [124], a result that took five years to
develop. While not directly verifiable, the documents were automatically translated into a
verifiable form for use with a verification tool called ISA-Formal [103]. ISA-Formal is intended

2.3. Integrated Assembly-Level Verification Efforts 13

to verify processor pipeline control and has been successfully used for that purpose on multiple
versions of the ARM ISA. At its core, it uses bounded model checking for instruction sequence
exploration. They accomplished this by developing a translator from ASL to the subset of
System-Verilog that can be handled by commercial Verilog model checkers.

Not all of the components they worked with could be handled by the model checkers, however;
they restricted its usage to ISA analysis. Alternative verification techniques were used for the
components that the model checkers could not handle, such as the floating-point units and
memory system. These alternative techniques involved raising the abstraction level and/or
reducing the explored state space, as their goal was not necessarily to detect all bugs in those
specific units. Instead, they wanted to check the correctness of the logic connecting them to
other processor elements, which they were successful at.

More recently, the Sail ISA specification language, which supports automatic generation of
emulation code and of proof definitions for Isabelle, HOL4, and in some cases Coq, has been
used to provide rigorous semantic models of various reduced instruction set computer (RISC)
ISAs [2, 42]. The ISAs in question are ARMv8.3-A, CHERI-MIPS, and RISC-V. It was
also used to produce a proof of correctness for a model of ARMv8-A address translation in
Isabelle.

2.3 Integrated Assembly-Level Verification Efforts

A major verification effort based on decompilation into logic was the verification of the
seL4 kernel [73, 74]. The seL4 project provides a microkernel written in formally proven
correct C code. The tool AutoCorres is used for C code verification [61]. Sewell, Myreen,
and Klein [113] verified a refinement relation between the C source code and corresponding
non-optimized and O2-optimized ARM binaries. The major differences with respect to our
work is that our methodology targets existing production code, instead of code written with
verification in mind. For example, the seL4 source code does not allow taking the addresses
of stack variables (such as in Fig. 6.7a): their approach requires a static separation of stack
and heap instead.

Shi et al. [114] formally verified a real-time operating system (RTOS) for automotive use called
ORIENTAIS. Part of their approach involved source-level verification using a combination of
Hoare logic and abstract communicating sequential processes model analysis [66]. Binary
verification was done by lifting the RTOS binary to xBIL, a related hardware verification
language [115]. They translated requirements from the OSEK automotive industry standard
to source code annotations. Ultimately, they proved properties such as deadlock-freedom,
memory access safety, and bounded response time in the presence of interrupts [116]. A
similarity with our work was the usage of Hoare logic, while the difference is that we performed
verification solely on the assembly level and with a more complex ISA. We ultimately handled
over 14 631 x86-64 instructions compared to their 60. While they did handle 8000 lines of C
as well, that is still a higher-level language than x86-64 assembly.

Targeting a similar case study as Chapter 6, Dam et al. [36] and Dam, Guanciale, and Nemati

14 Chapter 2. Related Work

[37] formally verified a tiny ARMv7 separation kernel, PROSPER, at the assembly level.
Separation kernels are similar to hypervisors, providing isolation for individual components of
a system and ensuring only those components that are allowed to communicate do [107]. Their
methodology integrated HOL4 with the Binary Analysis Platform (BAP) [22]. BAP utilizes
a custom intermediate language that provides an architecture-agnostic representation of
machine instructions and their side effects. First, the formal model of the ARM ISA provided
by Fox and Myreen [53] was used in an HOL4 tool to translate the ARM binary into BAP’s
intermediate language. Following that, the SMT solver Simple Theorem Prover (STP) [55]
was used to determine the targets of indirect branches and to perform weakest-precondition
computation with Hoare triples to verify the user contracts. While the approach was generally
automated, user input was still required to describe the contracts the separation kernel was
verified against. An extension to the work is found in the HAPSOC project by Baumann
et al. [5], who did a similar proof for the ARMv8-A model provided by Fox [52].

Finally, Bevier et al. [11] presented a systems approach to software verification that targeted
correctness all the way down to the hardware level. All of their work was implemented
in Nqthm. Hunt [68] developed a general-purpose, 32-bit microprocessor, FM8502, and
proved that its gate-level specification was an implementation of its formal ISA. Bevier
[8–10] designed a small OS kernel, Kit, and proved that it implemented “a fixed number of
conceptually distributed communicating processes” along with a set of typical kernel services
and some security properties. He did not prove that it could run on an FM8502, however;
it was executed on a more abstract model instead. Young [134] designed and proved the
correctness of a code generator, a major compiler component, for a subset of the Gypsy
2.05 programming language [60]. That code generator’s output was the verified, high-level
assembly language Piton [87]. Moore [86] then proved the correctness of that language’s
FM8502 implementation.

2.4 Verified Compilation

In contrast to directly verifying machine or assembly code, one can verify source code and
then use verified compilation. Verified compilation establishes that the semantics of the
output of the verified compiler is equivalent to the semantics of the input, so a program that
has previously been verified correct is verified to still be correct after compilation.

The CompCert project is one such verified compiler, used by the seL4 project to reduce its
TCB [73]. It is written in a subset of C called Clight [13, 79], though it itself is able to
handle most components of the C99 standard. The main difference between C and Clight is
that Clight is pure; none of its operations have side effects. It also provides only one loop
structure, an infinite loop that must be broken out of to exit. Clight has been mechanized in
the Coq theorem prover with established big-step operational semantics, making it a useful
subset of C for program verification work in Coq.

The full proof of semantic preservation, as it is called in the CompCert documentation, is
based off of proofs of semantic preservation for each step in CompCert’s compilation process,

2.5. Non-Formal Static Analysis 15

of which there are twenty. On top of that, it has eleven different intermediate languages for
those steps, all of which had to be proven semantically equivalent.

Another example of verified compilation is CakeML [77]. It utilizes a (substantial) subset
of Standard ML modeled with big-step operational semantics in HOL. Its main compiler
frontend is designed to take ML-like HOL functions and translate them to a CakeML abstract
syntax tree, which is then translated into machine code using a verified backend. The compiler
itself is bootstrapped, meaning it can compile itself in HOL. It also provides support for
using Hoare logic to perform post-hoc verification using a version of the CFML verification
framework [26, 27, 62].

More recently, Chen et al. [28] produced a compositional framework for the development of
certified, interruptible OS kernels that use device drivers. This was previously a challenge due
to the non-local and asynchronous behavior of hardware interrupts. Their approach uses a
general certified device model with multiple instantiations and provides an effective model of
device interrupts. The verification was done in Coq with the kernel written in Clight. Once
verification was complete, the source code was compiled using a modified version of CompCert
to ensure the semantics were maintained. They showed the value of their work by taking a
preexisting, non-interruptible, mostly-verified kernel, mCertiKOS [32], and extending it to
work in their framework along with a couple of device drivers. In order to deal with devices
running in parallel with the CPU, device interaction, drivers that are written in a mix of
assembly and C, and properly integrating the correctness proofs for individual components of
the system under test, they did the following. First, they designed their system architecture
such that each device driver is given its own logical CPU, running independently from the core
of the kernel. Then they designed an abstract model of interrupts based on existing hardware
implementations. The correctness of the system as a whole was shown by starting from a
base machine model and proving a refinement relation with each layer of abstraction placed
on top of it. As they started off with a mostly-verified kernel, it is likely they would have had
more difficulty if they had started with a kernel not explicitly designed to be verified. While
we did isolate functions for verification in Chapter 5, we did not do so for Chapter 6.

2.5 Non-Formal Static Analysis

Non-formal static analysis of binary code for the detection of bugs has also been an active
research field for decades [22, 76, 128]. This section covers some of the projects in that field
from the past fifteen years.

The BitBlaze project [12, 119] provides a tool called Vine which lifts x86 instructions to its
own intermediate language for assembly in order to perform analyses on a higher level. That
language is fully-featured and can itself be compiled back down to assembly if so desired. In
terms of analyses, Vine can construct CFGs for the lifted programs, perform compiler-style
dataflow analysis, generate dependency graphs, and slice programs [123, 130]. Though Vine
itself is not formally verified, it does support interfacing with the aforementioned SMT solver
STP as well as CVC Lite [3] and CVC3 [4]. This allows for formal verification.

16 Chapter 2. Related Work

Meanwhile, the tool Infer [24], now developed at Facebook, provides in-depth static analysis of
LLVM code to detect bugs in programs written in a variety of languages. It utilizes separation
logic [104] and bi-abduction to perform its analyses in an automated fashion. It is designed
to be integrated into compiler toolchains in order to provide immediate feedback even in
continuous integration scenarios. For all the languages it handles, it checks for null pointer
accesses and other null-related issues as well as checking for language-specific concurrency
issues. For C-style languages with a lower level of abstraction, it also looks for memory
leaks, performs linting for violations of coding conventions, and checks for calls to mobile
device application programming interfaces that are not available for the target device OS.
In Android code and Java in general, it ensures annotations can be reached, looks out for
mutability issues, and checks for resource leaks.

The static analysis tool FindBugs, written for Java code, takes a bit of a different approach
from those other two [67]. Rather than performing control flow or dataflow analyses, it
searches Java bytecode for common (bad practice) code idioms in order to detect likely bugs.
Much like Infer, some of the common errors it highlights include null pointer dereferences,
objects that compare equal not having equal hash codes, and inconsistent synchronization.
It even provides a bug database that can be used to keep track of its warnings throughout
multiple iterations of development.

A somewhat older tool, Splint [45] detects buffer overflows and similar potential security
flaws in C code. Splint relies on annotated preconditions to derive postconditions based on
the syntactic structure of the code. While their methodology is very similar to the formal
technique of Hoare logic, described later on in this dissertation (Section 3.1.2), they used
heuristics for loop analysis rather than proper invariants and thus could potentially miss
bugs. The annotations Splint uses are memory-focused, such as allowing users to specify that
certain variables should never be null or providing an emulation of unique_ptr functionality.
It also does constraint analysis and issues warnings when it encounters an expression it cannot
determine will not result in a bug, as well as checking for format string vulnerabilities.

The main difference between these static analysis tools and formal verification is that these
tools are generally highly suited to finding bugs but are not able to prove their absence.
This is due to a reliance on efficient but incomplete techniques, such as depth-bounded
searches.

2.6 Summary

This section covered some of the work related to that presented in this dissertation. Previous
assembly- and hardware-level formal verification efforts, verification efforts containing assembly
or binary analysis components, verified compilation, and non-formal static analysis tools were
all discussed.

Notably, while multiple assembly-level verification efforts presented in this chapter achieved
more coverage than the over 2379 instructions achieved by the work in Chapter 5, none

2.6. Summary 17

Table 2.1: Overview of related assembly verification and other work

Work Target Approach Applications Verified code

Clutterbuck,Carré SPACE-8080 ITP+VCG Example func 33 insts
O’Neill et al. Z8002 ITP+VCG Jet engine code
Yu & Boyer MC68020 ITP String funcs 863 insts
Matthews et al. Tiny/JVM ITP+VCG CBC enc/dec 631 insts
Goel et al. x86-64 ITP word-count 186 insts
Tan et al. ARMv7 ATP String search 983 insts
Myreen et al. ARM/x86 DiL seL4 9500 SLOC
Feng et al. MIPS-like ITP Example funcs
Schlich et al. ATmega16 MC Auto funcs Around 8k insts

Brauer et al. ATmega16
Intel MCS-51 SA+MC Example progs 2630 SLOC

935 SLOC
Fromherz et al. C/x86-64 ATP+VCG AES funcs
Chapter 5 x86-64 ITP+VCG HermitCore 2379+ insts
Chapter 6 x86-64 CG,ITP,VCG Xen 12 252 insts
Reid et al. ASL MC+others ARM ISAs 2 209 191+ SLOC
Sewell et al. C TV+DiL seL4 9500 SLOC
Shi et al. C/ARM9 ATP+MC ORIENTAIS 8k SLOC, 60 insts
Dam et al. ARMv7 ATP+UC PROSPER 3000 insts
Baumann et al. ARMv8-A ATP+UC HAPSOC 8000 SLOC
Bevier et al. PDP-11-like ITP+TV Full system 3k+ SLOC/insts

VCG = Verification Condition Generation DiL = Decompilation into Logic
SLOC = Source Lines of Code ATP = Automated Theorem Proving
UC = User Contracts CG = Certificate Generation
TV = Translation Validation MC = Model Checking
SA = Static Analysis ASL = ARM Specification Language

18 Chapter 2. Related Work

appear to have achieved the 12 252 verified instructions covered in Chapter 6 except the work
produced by ARM employees.

Chapter 3

Background

This part of my dissertation provides domain-specific information necessary to understand
the work presented in it. It is grouped into the two main categories of formal methods
(Section 3.1) and assembly language (Section 3.2).

3.1 Formal Methods

To quote Butler [23],

“Formal Methods” refers to mathematically rigorous techniques and tools for the
specification, design and verification of software and hardware systems.

This dissertation comes under the verification component of that.

3.1.1 Symbolic Execution

At its most basic, symbolic execution refers to executing a program with a set of symbolic
inputs rather than concrete values [72]. Based on the semantics of the program, the execution
may end up taking multiple paths; it could potentially be an infinite number if there are
loops involved.

In this work, the individual steps of symbolic execution are implemented as rewrite rules over
the state that derive their representation from Applying those rules in sequence to each step
or instruction of a program allows aggregation of the individual state changes involved in the
execution.

3.1.2 Hoare Logic

A form of axiomatic semantics, Hoare logic [65, 88] describes the behavior of a program with
a Hoare triple.

19

20 Chapter 3. Background

Definition 3.1 (Basic Hoare triple). Given predicates on state P and Q and a program C,
{P}C{Q} asserts that executing C on a state where P holds will result in a state where Q
holds (as long as C terminates, that is).

In a more formal form and using C(σ) to represent the result of executing program C from
initial state σ, we have:

{P}C{Q} ≡ P (σ) ∧ C(σ) 6= ⊥NT −→ Q(C(σ)).

To prove that triple, deductive reasoning with Hoare rules formally derived from the structure
of whatever programming language is in use would be used to syntactically decompose the
program into its constituent behaviors. If any loops were to be present, the loop rule would
require an additional condition that would hold on every iteration, a loop invariant, for each
loop.

As Hoare logic was heavily inspired by Floyd’s flowcharts, it is sometimes referred to as
Floyd-Hoare logic.

Verification Condition Generation

In the context of this dissertation, a VCG is the tool that applies Hoare rules (for Chapter 6)
or performs symbolic execution (for Chapter 5) in order to obtain a set of proof subgoals
that must be proven true for the full proof to succeed. These goals are the VCs.

3.1.3 Theorem Proving

Isabelle and HOL

The theorem prover utilized in this work was Isabelle 2018 [93]. It is a generic proof assistant
with a flexible, extensible syntactic framework. Isabelle also utilizes a powerful proof language
known as intelligible semi-automated reasoning [131] Its most-commonly-used logic is HOL;
when used with that logic, it is referred to as Isabelle/HOL.

HOL-Word We made heavy use of Isabelle/HOL’s Word library [40] for the work presented
in this dissertation. That library provides a limited-precision integer type, ’a word, where
’a is the number of bits in the integer. Various operations are provided for manipulation of
and arithmetic involving formal words, including bit indexing, bit shifting, setting specific
bits, and signed and unsigned arithmetic. Operators for inequality are also included, as well
as operations for converting between word sizes.

Eisbach This simple but powerful language for declaring custom proof methods [84] is
used in the verification methodologies for both works presented in this dissertation, though
Chapter 6 used more of its features. Internally, it relies heavily on the standard method

3.2. Assembly Language 21

Table 3.1: Method expressions

Syntax Name Behavior

a, b Sequential composition Apply a, then b

a; b Structural composition Apply a to the first subgoal,
then apply b to just the goals produced by a

a | b Fallthrough Try applying a and then apply b if a fails
a? Attempt Try to apply a, leaving the goal alone if it fails
a+ Repeat at least once Will repeat until a fails or no subgoals remain
a[n] Subgoal restriction Apply a to the first n subgoals, defaulting to 1

expression syntax [132], described in Table 3.1. The precedence of the syntactic elements
involved, from low to high, is | ; , [] + ?. Parentheses can be used to modify the
precedence, as with regular mathematical expressions.

Creating a standalone method is as simple as:

1 method a =
2 b, c

Then a can be used in a proof the same as any other method. To make a method that can
have theorems supplied to it, you use the uses keyword:

1 method a uses t =
2 (simp add: t), c

The method could now be called like apply (a t: thm1 thm2) and it would supply the two
theorems to simp. You can also create methods that take terms as input:

1 method a for L :: ’a list =
2 b[where l=L]

And then call it like apply (a ‹[1, 2]›).

3.2 Assembly Language

No modern high-level programming language is ever executed directly on hardware. Instead,
they are compiled, either before execution (ahead-of-time compilation) or at runtime (just-in-
time compilation), to low-level machine code. That machine code is specified by the ISA of the
CPU in use. One step above machine code is assembly language, which is a textual represen-
tation of the binary code to execute, with each instruction and its operands being represented
by human-readable mnemonics. There are usually some additional abstractions,

22 Chapter 3. Background

3.2.1 The x86-64 Instruction Set Architecture

An ISA is the specification of the visible behavior of a processor. They have long been
published as human-readable documents [18, 69], though ARM recently released several of
their ISAs in a machine-parsable, executable format [124].

An ISA can specify many things about the processor they describe. The data types supported
by the processor are included in that, such as integers and floating-point values of specific
sizes. The processor state is another major one, including how much main memory and
registers are available; maybe even details of the cache(s) if it’s an architecture where caching
(on certain levels) is a manual process, such as is traditional for graphics processing units. The
semantics of the architecture are another, such as the memory consistency model (complicated
enough for x86-64 that formalizing it was a challenge [98, 99, 112]) and the addressing modes.
The actual set of instructions supported by the ISA and how it communicates with external
devices are also important.

Historically, there have been two main types of ISAs: complex instruction set computers
(CISCs) and RISCs [70]. CISCs came first, featuring complex ISAs with multiple addressing
modes and many variable-length instructions with in-depth behavior. RISCs were a response
to the growing complexity of CISC designs, providing a set of simple instructions that,
other than loads and stores for memory access, only operate on a large register file. The
main push for RISCs was actually a desire to reduce the complexity of implementations.
RISC instructions being generally simpler than their CISC equivalents means less circuitry is
required to implement them, which reduces die size/chip surface area and allows for increases
in clock speed. This also allows the instructions themselves to complete faster, with most
RISC instructions finishing in one clock cycle compared to the many many-cycle instructions
of CISCs.

Currently, RISCs are used more often for systems that require low-power operation while
CISCs are used more for high-performance applications. In modern times, however, differen-
tiating between the two types of architectures due to power or performance concerns is no
longer as relevant as it used to be. For current designs, the differences in performance and
power have more to do with implementation than ISA [14].

In the end, this dissertation used the x86-64 ISA as it is a widely-used architecture that
has had formal semantics derived for most of its instructions in previous works [64, 106].
It is the 64-bit, mostly-backwards-compatible successor to the x86 ISA, also known as x64,
x86_64, AMD64 (for AMD chips), and Intel 64 (for Intel chips). The x86 family of processors
originated in 1978 with the 16-bit Intel 8086, whose design is still reflected in that of modern
x86 ISAs. Many of the instructions are the same, though extended over the years to work
with larger operands. There are also many new instructions that have been added over the
years.

The rest of this section describes features and properties of x86-64 that are relevant to this
dissertation.

3.2. Assembly Language 23

State

For the purposes of this dissertation, the important components of x86-64 state are the
memory model and the registers available for use.

Memory Addressing in x86-64 takes the form of Eq. (3.1).

a =

fs :
gs :

...

GPR
...

 +

...
GPR
...

 ∗

1
2
4
8

rip

+ displacement (3.1)

In this ISA, while addresses are all 64 bits long, only 52 of those bits are actually usable for
physical addressing. Additionally, while it provides virtual memory so that every process
gets its own address space, hiding the details of its memory management and paging from
user-mode programs, that virtual memory only gets 48 bits for addressing; the rest must be
sign-extended from the most significant bit (MSB) of that 48-bit value or else the address
will be rejected.

While the actual instructions have no problems accepting 64-bit address operands, the issue
lies in how paging is implemented and the usage of high address bits as storage for metadata.
Allowing a full 64-bit address space would require additional storage space for the information
that is currently stored in those bits. It is not impossible that it will happen eventually,
however.

For now, the works in this dissertation make a simplifying assumption that all 64 bits are
available for addressing. Properly modeling the 48-bit restriction would require additional
word arithmetic, though would not be infeasible. We also do not deal with memory consistency,
as the symbolic execution engine in Chapter 4 does not implement out-of-order execution or
any similar optimizations.

Registers The standard registers in x86-64 (Table 3.2) are 64 bits in size, but their lower
bits can be referenced alone if need be. If you write to one of the available 32-bit registers,
it will zero out the upper 32 bits, but if you write to a 16- or 8-bit register, the rest of the
contents will be preserved.

Flags

Stored in the rflags register on x86-64, these bits (Table 3.3) indicate, and in some cases
control, processor state. CF, OF, PF, SF, and ZF are all used for specific conditional branches.

24 Chapter 3. Background

Table 3.2: The x86-64 registers (excluding SIMD)

Purpose 64 bit 32 bit 16 bit 8 bit high 8 bit low

General Purposea rax eax ax ah al
General Purposeb rbx ebx bx bh bl
General Purposec rcx ecx cx ch cl
General Purposed rdx edx dx dh dl
General Purposee rdi edi di dil
General Purposef rsi esi si sil
General Purpose r8 r8d r8w r8b
General Purpose r9 r9d r9w r9b
General Purpose r10 r10d r10w r10b
General Purpose r11 r11d r11w r11b
General Purpose r12 r12d r12w r12b
General Purpose r13 r13d r13w r13b
General Purpose r14 r14d r14w r14b
General Purpose r15 r15d r15w r15b
Base Pointer rbp ebp bp spl
Stack Pointer rsp esp sp bpl
Program Counter/Inst. Pointer rip eip ip
Code Segment (= 0) cs
Data Segment (= 0) ds
Extra Segment (str ops, = 0) es
Variable-Purpose Segment fs
Variable-Purpose Segment gs
Stack Segment (= 0) ss
Processor Status rflags eflags flags
a Formerly the accumulator (temporary variable for math); was also used for I/O
port access and interrupt calls

b Formerly base pointer for memory access; also got some interrupt return values
c Formerly loop counter; was also used for shifts and got some interrupt return
values

d Formerly data; was used for I/O port access, arithmetic, some interrupt calls
e Formerly destination index for string and memory array operations, was also used
for far pointer addressing with es

f Formerly source index for string and memory array operations

3.2. Assembly Language 25

Table 3.3: Flags for x86-64

Bit Label Description

0 CF Carry flag*

1 Reserved, always 1 in eflags
2 PF Parity flag†

3 Reserved
4 AF Adjust flag‡

5 Reserved
6 ZF Zero flag; indicates result was 0
7 SF Sign flag; indicates MSB of result was 1
8 TF Trap flag; permits operation of a processor in single-step mode
9 IF Interrupt enable flag§

10 DF Direction flag; controls the direction of string processing
11 OF Overflow flag; indicates result overflowed

12-13 IOPL I/O privilege level; shows I/O privilege level of current program or task
14 NT Nested task flag‖

15 Reserved, always 1 on 8086 and 186, always 0 on later models
16 RF Resume flag; enables turning off certain exceptions while debugging code
17 VM Virtual 8086 mode flag¶

18 AC Alignment check (486SX+ only)
19 VIF Virtual interrupt flag (Pentium+)
20 VIP Virtual interrupt pending (Pentium+)
21 ID Able to use cpuid instruction (Pentium+)

* Indicates arithmetic carry/borrow has been generated out of arithmetic logic unit’s MSB
† Set if the number of set bits in the least significant byte is even
‡ Indicates when an arithmetic carry or borrow has been generated out of the four least
significant bits (lower nibble). Primarily used to support binary-coded decimal arithmetic.

§ Determines if the CPU will handle maskable hardware interrupts
‖ In protected mode, indicates one system task has invoked another via call rather than

jmp.
¶ In protected mode, allows the execution of real mode applications that are incapable of
running directly in protected mode (a form of hardware virtualization).

26 Chapter 3. Background

Instructions

This section covers some of the important x86-64 instructions.

Function and Stack

call Pushes the address of the next instruction onto the stack, decrementing rsp, and then
jumps to its operand.

enter Modifies stack for entry to procedure for high level language. Takes two operands: the
amount of storage to be allocated on the stack and the nesting level of the procedure.

push Pushes its operand onto the stack, decrementing rsp.

pop Pops the current value off the stack, incrementing rsp, and stores the popped value in its
operand.

leave Releases local stack storage created by the previous enter instruction.

ret Pops the current value off the stack, incrementing rsp, and jumps to it.

Jumps

jo Jump if overflow (OF)

jno Jump if not overflow (¬OF)

js Jump if sign (SF)

jns Jump if not sign (¬SF)

je Jump if equal (ZF)

jz Jump if zero

jne Jump if not equal (¬ZF)

jnz Jump if not zero

jb Jump if below (CF)

jnae Jump if not above or equal

jc Jump if carry

jnb Jump if not below (¬CF)

jae Jump if above or equal

jnc Jump if not carry

jbe Jump if below or equal (CF ∨ ZF)

jna Jump if not above

3.2. Assembly Language 27

ja Jump if above (¬CF ∧ ¬ZF)

jnbe Jump if not below or equal

jl Jump if less (SF 6= OF)

jnge Jump if not greater or equal

jge Jump if greater or equal (SF = OF)

jnl Jump if not less

jle Jump if less or equal (ZF ∨ SF 6= OF)

jng Jump if not greater

jg Jump if greater (¬ZF ∧ SF = OF)

jnle Jump if not less or equal

jp Jump if parity (PF)

jpe Jump if parity even

jnp Jump if not parity (¬PF)

jpo Jump if parity odd

jcxz Jump if cx register is 0

jecxz Jump if ecx register is 0

Single instruction, multiple data (SIMD) These instructions, which operate on mul-
tiple 32- or 64-bit chunks, allow for a degree of vectorization (up to eight 64-bit values or
16 32-bit values at once on modern versions of x86-64 with AVX-512). When AVX-512 is
supported, there are 32 512-bit zmmN registers available, each of which can also be accessed
as a 256-bit ymmN or a 128-bit xmmN register. Those functions from the case studies that use
SIMD instructions only go up to xmm. In some cases, they are just used for internal moving
of several values at once, but several of the functions rely on SIMD instructions to support
variable-length argument lists.

3.2.2 The System V AMD64 Application Binary Interface

While an ISA specifies the features of a processor and what it can do, there is plenty more that
must be standardized for easy interoperability of software. An ABI specifies the interfaces
for different components in a software system, though not always formally. Those interfaces
include the binary format of object files, the format of program libraries, how system calls are
made, and the standard calling convention, how function calls are structured on the machine
code level.

28 Chapter 3. Background

As the programs used in Chapters 5 and 6 were compiled and run on Linux, this dissertation
focuses on the System V AMD64 ABI [133], which is the standard for most Unix-based
systems. The relevant aspects are the fact that the System V ABI uses the Executable and
Linkable Format format for binaries, though we do not care about that once we are dealing
with assembly, and the calling convention. The important aspects of the calling convention
for this ABI are the following:

The first six integer or pointer arguments are stored in rdi, rsi, rdx, rcx, r8, and r9, in
that order. r10 is used as a static chain pointer when there are nested functions. Certain
floating-point arguments will be stored in xmm0-7. Any additional arguments will be passed
along on the stack.

Integral values up to 64 bits are stored in rax while those up to 128 bits are split between
rax and rdx. Floating-point return values are stored in xmm0 and xmm1.

Registers rbx, rbp, and r12-r15 are callee-saved, meaning they must be pushed and popped
locally to preserve their values between function calls. All other registers must be saved by
the caller.

3.2.3 GCC

The compiler used to build the case studies in Chapters 5 and 6 is important, as it uses the
segment registers fs and gs for its own purposes. fs keeps track of the original value of
the stack canary used to detect stack smashing [35] while gs is used to access thread-local
storage. For this dissertation, only fs is relevant, as none of the case studies or examples in
Chapters 5 and 6 used thread-local storage.

3.2.4 Basic Blocks

Much of the memory work in this document relates to the concept of basic blocks. A basic
block is defined here as a sequence of assembly instructions whose behavior can be described
using only state transitions and branches. An additional restriction is that they have no
internal loops; they will always terminate, either due to successful completion or early failure.
This definition differs slightly from the definition used by compilers such as LLVM. The
compiler definition is stricter, as it requires that each block must terminate with a control
flow instruction (or fall through, on the assembly level) and must not contain any other
control flow instructions [80, 81].

3.2.5 Tail Call Optimization

Tail call optimization, implemented in most major C and C++ compilers, is a technique
for converting recursive functions into loop-based ones that only use a set number of stack
frames. Unfortunately, that can only be applied to functions that fit the requirements for

3.3. Summary 29

proper tail calls [100], as imperative languages like C were not designed with such features in
mind. The technique also supports optimizing non-recursive tail calls, however, and that has
a lower bar.

3.3 Summary

This chapter gave an introduction to formal methods, including formal semantics, symbolic
execution, Floyd verification, Hoare logic, model checking, and theorem provers. It also
described some basic aspects of the x86-64 ISA and System V AMD64 ABI as well as some
general details on assembly.

30 Chapter 3. Background

Chapter 4

Symbolic Execution

This chapter covers the methodology used in Chapters 5 and 6 to formally determine the
state changes caused by individual basic blocks. This methodology relies on a formal big-step
semantics of the x86-64 ISA provided by Roessle, Verbeek, and Ravindran [106], described
in Section 4.1. We then extended those semantics with additional rewrite rules to increase
efficiency and properly reason about memory. Those rules are documented in Section 4.2. The
rules involving reading and writing from memory form the basis for the memory preservation
methodologies in Chapters 5 and 6. They essentially generate memory region VCs that must
be discharged in order to prove memory preservation.

My main contribution to this chapter was working on additional proven-correct simplification
rules for word arithmetic as well as more presimplification rules for various instructions and
their variants (Section 4.2).

Example 4.1 (Aggregation). Consider the following two instructions:

1 xor ax, ax
2 add al, 1

These instructions write to the 64-bit register rax, introduced in Section 3.2.1. Registers
ax and al respectively refer to the low 16 and 8 bits of that register. Symbolic execution
produces the following assignment: rax := 〈63, 16〉rax • 116. Here 〈63, 16〉 denotes taking the
higher 48 bits and • denotes concatenation, with 116 being the number one zero-extended
to 16 bits. The xor instruction sets the lower 16 bits of the register to zero while add
increments the lower byte by one. Both instructions keep the higher 48 bits intact. The
aggregate result is overwriting the lower 16 bits of the register with the 16-bit representation
of the number one.

Note that if this had used eax instead, the upper 32 bits of rax would have been zeroed out
as well due to the semantics of operations on 32-bit registers in x86-64.

31

32 Chapter 4. Symbolic Execution

4.1 Machine Model

In order to perform symbolic execution, you must first have some sort of machine model. The
machine model used in this dissertation for the work in Isabelle/HOL is an extension of the
work of Roessle, Verbeek, and Ravindran [106]. They embedded in Isabelle/HOL a bitvector-
based, big-step semantics machine-learned from a modern version of the x86-64 ISA. That
semantics included instruction set extensions such as the Streaming SIMD Extensions family
to increase the possible programs the semantics could execute. To improve reliability of their
work, it was tested against an actual, live x86-64 machine to prove semantic equivalence. The
semantics they used was an extension of that provided by Heule et al. [64], who did the initial
application of machine learning to derive semantics from a physical machine. This produced
highly reliable semantics: they formally compared a subset of their automatically-generated
semantics to manually written rules based on the Intel reference manuals and found that in
the few cases where they differed, the Intel manuals were wrong. Note that this model does
not include concurrency.

The model is structured as follows. It has some symbolic state defined as an Isabelle record
that stores registers, flags, and 64-bit byte-addressable memory. The memory holds both
instructions and data, as in the standard von Neumann model. Each instruction is executed
by a step function, defined to suit the nature of the symbolic execution engine in use.
The works presented in this dissertation in Chapters 5 and 6 each use their own, slightly
different symbolic execution engine, though the ultimate behavior is executing a sequence of
instructions one by one, modifying the state each time.

The instructions themselves are loaded from the machine model by mapping from the deeply-
embedded instruction representation extracted within or supplied to the step function to
the bitvector formulas provided by Roessle, Verbeek, and Ravindran [106]. If no such
formula exists for the current instruction, a manually-implemented variant is used. There are
several sets of instructions that are guaranteed to only have manual implementations due
to limitations of the machine learning setup, with the major ones being jumps, call, push,
pop, enter, leave, and ret.

4.1.1 Memory Model

Reads and writes of the machine model’s memory space take a specific form. They operate on
memory regions. A memory region [a, s] is defined to have type W× N; that is, its starting
address a is a 64-bit word and its size in bytes s is a natural number.

Reading a region of memory from some state σ uses the notation σ : ∗[a, s]. In Isabelle,
this operation internally reads the list of s bytes starting from the given address a in the
appropriate order and converts it to a word. If it is clear from context which state is meant,
the state will be omitted. Meanwhile, writing to memory uses the notation x := e, which has
type ASP = (SP, ESP); these assignments denote writing an expression e to some location x
that is a state part, SP; it can be a region, register, or flag. Flags can only take boolean
expressions while the result for a register must be a 64-bit word. The behavior for regions in

4.2. Rewrite Rules 33

Isabelle is to internally decompose the expression to write into its component bytes and then
write those into memory in the appropriate order. The expressions themselves are of type ESP,
representing expressions over state parts. These expressions consist of common bit-vector
operations including taking subsets of bits, bitstring concatenation, logical operators, casting,
and floating-point, signed, and unsigned arithmetic.

In this dissertation, modifications to state are represented as sets of assignments, P(ASP),
formulated as α = {x0 := e0, x1 := e1, . . . }. These assignments are all independent; their initial
conditions are based off of whatever state is present before application of the assignments,
and thus they can be applied in any order. To order writes, use the notation α(x := e),
indicating that assignment x := e is applied after the set of assignments α. Notation σ(x := e)
or σα indicates applying that assignment or set of assignments to the supplied state.

4.1.2 Restrictions of the Model

As the x86-64 ISA is a little-endian architecture, all operations on memory presented in this
dissertation are designed with that in mind.

Example 4.2. Given the state σ = {[a, 2] := 0xEEFF}, the read σ : ∗[a, 1] would produce
0xFF.

Support for big-endian architectures would require changing how reads and writes are
performed, as both the formal Isabelle and informal Haskell models assume little-endianness
in their implementation. Some ISAs are even bi-endian, allowing both big- and little-endian
memory operations. These include modern versions of ARM, PowerPC, SPARC, and MIPS.
Supporting bi-endianness would require additional complexity in memory handling.

Additionally, the usage of a shared data space for instructions and data, though very common,
does involve some issues for verification. The model does not currently provide any memory
protection schemes, such as those used in modern hardware, and there is nothing to prevent
a write from overwriting the program itself. For that reason, the works presented in this
dissertation must assume that the loaded assembly is never modified.

4.2 Rewrite Rules

The basic rules supplied by the formal machine model are not well-suited to verification; they
are often very low-level bitvector/bitstring operations. While Roessle, Verbeek, and Ravindran
[106] provided a large set of simplification rules to abstract away from the underlying
representation, those rules did not cover all situations encountered in this dissertation,
requiring the additions of more such rules during the process of verification. In particular,
the decomposition of writes into bytes and recomposition of reads from bytes is hidden from
the user under most circumstances, allowing better abstraction such as that depicted in
Example 4.1.

34 Chapter 4. Symbolic Execution

Additionally, to increase performance, every instruction variant with learned semantics
detected in an analyzed function was given a presimplified lemma. Most of those lemmas
were obtained from [126]. They provide immediate abstractions of the low-level instruction
representations that rely on the aforementioned simplification rules. Using these lemmas
improves performance when performing symbolic execution as they greatly reduce the number
of simplification rules that must be applied.

4.2.1 Memory Aliasing

This section provides an insight into the issue of memory aliasing. For example, consider the
assignment [a1, s1] := v1 applied to the set of assignments A = {[a0, s0] := v0}. The result of
that operation depends on whether the two regions [a0, s0] and [a1, s1] overlap, are separate,
or have an enclosure relation. If they are separate, then the resultant minimal assignment
set is A′ = {[a0, s0] := v0, [a1, s1] := v1}. If they instead overlap, then the situation is more
complicated. For example, in the case where a0 = a1 and s0 = s1, the resultant minimal
assignment set would be A′ = {[a0, s0] := v1}. Other forms of overlap or enclosure, such as
writing two bytes to a four byte region or to regions that are not aligned, require even more
complicated reasoning.

The actual definitions of those relations are as follows.

Definition 4.3 (Separation). Two regions r0 = [a0, s0] and r1 = [a1, s1] are separate, notation
r0 ./ r1, if and only if the following is true:

s0 = 0 ∨ s1 = 0 ∨ a0 + s0 ≤ a1 ∨ a1 + s1 ≤ a0.

This means that, if at least one of the regions has zero size or the lower bound of one of
the regions is equal to or greater than the upper bound of the other, those two regions are
separate. If those regions are not separate, they overlap.

Definition 4.4 (Enclosure). Region r0 is enclosed by r1, notation r0 v r1, if and only if:

a0 ≥ a1 ∧ a0 + s0 ≤ a1 + s1.

This means that, if the lower bound of the first region is the same as or greater than the
lower bound of the second region and the upper bound of the first region is either the same
as or less than the upper bound of the second region, the first region is enclosed by the
second.

4.2.2 Rewrite Rules for Memory

An additional problem is when a region that overlaps with at least one other region that has
been modified is written to. To combine those writes, the regions must be merged.

4.2. Rewrite Rules 35

Definition 4.5 (Merging). The merge1 of two symbolic assignments r0 = [a0, s0] := v0 and
r1 = [a1, s1] := v1, where the write to r0 occurs before the write to r1, is defined as

r = [a, s] := b0 • b1 • b2, (4.1)

where:

a = min(a0, a1)
i0 = a1 − a0

i1 = a0 + s0 − (a1 + s1)
s = s1 + max(i0, 0) + max(i1, 0)
b0 = if i1 > 0 then 〈8s0 − 1, 8s0 − 8i1〉v0 else 00

b1 = 〈8s1 − 1, 0〉v1

b2 = if i0 > 0 then 〈8i0 − 1, 0〉v0 else 00

As the merged region must encompass both original regions, its address a is the minimum
of a0 and a1. The value stored in the merged region consists of three parts: whatever portion
of v0, if any, is below a1; v1 as a bitstring; and the part of v0 above a1 + s1 (the upper bound
of r1), if there are any bits in r0 above that address. For sets of assignments such as those
mentioned above, merge is used as an infix operator, with order being important (the second
assignment overwrites [parts of] the first, as shown above). Example 4.6 demonstrates a more
concrete usage of merging.

Writing to Memory

The formal rewrite rule for writing to a new region into memory is structured as in Eq. (4.2).
The underlined terms are the reducible expressions, or redexes. They are the subterms not in
normal form, the ones that may be rewritten again after application of the rewrite rule.

σ(r0 := v0)(r1 := v1) ≡

σ(r1 := v1)(r0 := v0) if r0 ./ r1

σ((r0 := v0) merge (r1 := v1)) otherwise
(4.2)

The proof of correctness for the above rule is based on two lemmas. First, writing separate
blocks is commutative. Second, the merge function is correct: the produced region is the
result of two sequential and overlapping memory writes.

Reading from Memory

Reading from memory in the process of symbolic execution also requires analysis of separation
and merging. Consider reading from the region [a, s] given a set of assignments α, using
Algorithm 4.1 as our guide. If an assignment to the exact region [a, s] exists in the current

1This merge operates on the bit level, but technically the original Isabelle version uses byte lists; also, the
Haskell version merges the left region onto the right, not the right onto the left as the Isabelle version does.

36 Chapter 4. Symbolic Execution

Algorithm 4.1 Symbolically reading from memory
Require: A set of assignments α : ASP and symbolic region [a, s]
Ensure: A symbolic value and possibly-updated α
function readMem(α, [a, s])

if ∃v · ([a, s] := v) ∈ α then
return (α, v)

else
ovl ← {([a′, s′] := v) ∈ α | [a′, s′] 6./ [a, s]}
sep ← {([a′, s′] := v) ∈ α | [a′, s′] ./ [a, s]}
[al, sl], [ar, sr]← the left- and rightmost regions in {[a, s]} ∪ ovl
r ← [al, ar − al + sr]
[a′, s′] := v′ ← (r := ∗r) merge . . . merge ovl1 merge ovl0
α′ ← {[a′, s′] := v′} ∪ sep
a′′ ← 8(a− a′)− 1
return (α′, 〈s+ a′′, a′′〉v′)

end if
end function

set of assignments, then the value assigned to that region, v, is returned. Otherwise, the
algorithm must consider the set of assignments for all possibly overlapping and necessarily
separated regions. One single assignment that accounts for all overlapping regions must
be developed. To do this, the leftmost and rightmost overlapping regions are considered.
These regions are defined as the regions that start at the smallest address al and end at
the greatest upper bound ar + sr, respectively. The new region r has address al and size
ar − al + sr. All of the overlapping regions are then merged into one single assignment based
on r, starting with the trivial assignment r := ∗r. This assignment does nothing but set
up the merging, as it writes the value read from region r back to that same region. After
merging, the current set of assignments is updated to be the merged region and assignment
combined with all separate assignments. The final value read from memory is extracted from
the merged assignment.

The correctness of the readMem algorithm is derived from the correctness of its component
operations.

Example 4.6 (Reading, writing, and merging). Consider the following x86-64 assembly
block:

1 a0: mov word ptr [rsp -0x8], 0xEEFF
2 a1: mov dword ptr [rsp -0x4], 0xAABBCCDD
3 a2: mov ax, word ptr [rsp -0x7]
4 a3: mov edi , dword ptr [rsp -0x6]

The instructions at addresses a0 and a1 write to two separate regions in memory, r0 =
[rsp − 8, 2] and r1 = [rsp − 4, 4]. Following the writes, the instruction at a2 reads from
region [rsp− 7, 2], which is merged with r0 to obtain r2 = [rsp− 8, 3]. Reading from region

4.2. Rewrite Rules 37

[rsp− 6, 4] results in a merge with r2 and r1, producing region [rsp− 8, 8]. The aggregated
assignment is then

[rsp− 8, 8] := 0xAABBCCDD • 〈31, 16〉 ∗ [rsp− 8, 8] • 0xEEFF.

Assuming an intial condition of rsp = rsp0, the set M of memory regions required for the
given block of assembly is ultimately

M = {[rsp0 − 8, 2], [rsp0 − 4, 4], [rsp0 − 7, 2], [rsp0 − 6, 4], [rsp0 − 8, 8]}.

Reasoning over Memory Regions

Reads and writes both need to reason over separation and enclosure, so providing a means
for users to easily specify those relations via assumptions over memory layout increases
efficiency. This section covers formulating those assumptions and the necessary groundwork
for automatic inference using them.

As stated in Section 4.1, the memory model in use is a simple, flat function from 64-bit words
to bytes. As instructions and data are both stored in the same memory space, assumptions
on their separation would be ideal. The function ⊗ is used to formulate such assumptions.
It takes as input a set of regions annotated with unique IDs. These IDs allow reasoning
over (in)equality of regions; without them, it would be impossible to determine whether two
regions of the same size are equal if their addresses are non-trivial expressions.

Definition 4.7. Let M be a set of pairs of unique IDs and regions. M is separated if and
only if all of its regions are separated:⊗

M ≡ ∀(i0, r0), (i1, r1) ∈M · if i0 = i1 then r0 = r1 else r0 ./ r1 (4.3)

This function over memory region sets compares all possible combinations of ID-region pairs
in the supplied set, returning true only if each region has a unique ID and is separate from
every other region in the set.

Originally, set M was intended to contain large regions, such as the whole stack frame. As
the rewrite rules are focused on smaller regions, such as per-variable regions. rules that infer
properties over smaller regions from larger ones are needed.

r v r (4.4a)
r0 ./ r1 = r1 ./ r0 (4.4b)

r0 v r2 ∧ r1 v r3 ∧ r2 ./ r3 −→ r0 ./ r1 (4.4c)
r0 v r1 ∧ r1 v r0 −→ r0 = r1 (4.4d)
r0 v r1 ∧ r1 v r2 −→ r0 v r2 (4.4e)

r0 ./ r1 ∧ snd r0 6= 0 ∧ snd r1 6= 0 −→ r0 6v r1 (4.4f)⊗
(M) ∧ (i0, r0), (i1, r1) ∈M ∧ i0 6= i1 −→ r0 ./ r1 (4.4g)

38 Chapter 4. Symbolic Execution

Equation (4.4) shows the inference rules for properties over memory regions. These rules
are able to infer the properties of separation and non-enclosure for smaller regions based on
assumptions over larger ones. However, they cannot infer enclosure.

Often, the only way to prove enclosure is to unfold its definition. This introduces two
inequalities over words, as shown in Definition 4.4. Such inequalities can be solved using
the Isabelle/HOL tool unat_arith, which is an arithmetic equation solver for bitvectors
[39, 40]. That tool is augmented with several heuristics and auxiliary lemmas to facilitate
enclosure proofs. However, such proofs are time-consuming and can significantly clutter the
proof effort.

The initial solution to this issue, which is used in Chapter 5, relies on parent regions. A
parent region is a member of set M and is thus a region annotated with an ID. Parent
relationships are manually established to avoid having to do any unfolding. Local variables
would have the stack frame as their parent region while global constants would have some
data section as their parent. The following notation is used to link a memory region r0 to a
parent region r1 with ID i: parent(r0, i, r1). Given that information, the proof of enclosure is
done automatically, and only once. The established enclosure properties are then used for
inference as per the rules in Eq. (4.4).

As a concrete example, consider a two-byte array starting at address 10 and having ID 5.
The region for this array would be [10, 2], with ID formulation (5, [10, 2]). If we take the two
bytes of the array as child regions, the region relations would be parent([10, 1], 5, [10, 2]) and
parent([11, 1], 5, [10, 2]).

There is also an alternative to using parent regions: giving each small region its own ID. This
avoids having to provide explicit parent relationships except for those cases where reads or
writes of different size from or to the same region occur. Chapter 6 takes that approach.

Overflow

As a note, many of the formal rewrite rules regarding memory usage have an internal require-
ment that the supplied memory regions not overflow. That is, for any memory region r, its
address plus its size must be less than 264. This is represented as noBlockOverflow(r)
and may be required as an explicit assumption in some cases. With the appropriate manual
or generated region relations, however, it should not normally be necessary.

4.3 Summary

This chapter introduced symbolic execution, a way of aggregating the state changes for
individual instruction semantics. Symbolic execution is generally implemented as a set
of rewrite rules based off of some machine model. Within that model are rewrite and
simplification rules for reading and writing memory, required for abstract, region-based
memory reasoning. Separation and enclosure are the two main relations needed for such

4.3. Summary 39

reasoning. In some cases, reasoning about enclosure can be very time-consuming, and thus
a set of assumptions and associated rewrite rules are provided that allow for user-provided
memory layouts, which greatly increases productivity.

40 Chapter 4. Symbolic Execution

Chapter 5

Control-Flow-Driven Verification

The memory usage analysis approach presented in this chapter provides a Floyd-style method-
ology featuring annotations on specific instructions. It is designed for the proving of memory
preservation over individual assembly functions. That property ensures that only documented
regions of memory are modified; anything outside of those regions remains unchanged.

This control-flow-driven verification can be applied to functions with loops and subcalls,
including directly-recursive calls. It can be used to prove the absence of common memory-
related issues, such as buffer and stack overflows. In cases where overflow may occur, the
methodology helps extract the assumptions required to prevent that. For efficiency, it selects
the annotation locations, called cutpoints, such that every path through the program is
symbolically executed only once.

An overview of the methodology’s steps can be seen in Section 5.1, with formal definitions
of the needed constructs presented in Section 5.2. Following that, Section 5.3 describes
how the method uses composition on the function level and within function bodies. Two
examples providing a brief demonstration of the methodology can be found in Section 5.4,
while a real-world application to the HermitCore unikernel library [78] is presented in
Section 5.5. Our observations regarding usage of the methodology on that case study are
given in Section 5.6.

My three main contributions to the memory preservation work presented here were: 1. the
development of a tool for producing proof skeletons for memory preservation, interfacing
with the analysis tool angr (Section 5.1); 2. the development of structured proof strategies
to flesh out and verify those skeleton proofs, along with the development of guidelines for
invariants that provide for function-level composition (Section 5.3); and 3. the application of
the methodology to functions in Sections 5.4.1 and 5.5.

41

42 Chapter 5. Control-Flow-Driven Verification

x86-64 binary Python
package Isabelle

Formal Proof
of Memory
Preservation

disassemble

generate
theories

invariant

regions

Figure 5.1: Overview of control-flow-driven memory preservation verification

5.1 Overview of Methodology

The first step in the process of analysis for a function is disassembly of an x86-64 binary
containing it. This is done using a modified version of the reassembly analysis [129] of the
binary analysis tool angr [117, 128]. That modified version was provided by Roessle, Verbeek,
and Ravindran [106] for generating assembly usable with their Isabelle parser. By building on
angr, the work of abstracting from binary to CFG is handled with minimal user input.

To achieve minimal symbolic execution, cutpoints are automatically selected by a Python
package that relies on angr’s CFGEmulated control flow analysis. The cutpoints are described
in Section 5.2.3. Basic starting predicates for those preconditions and postconditions as well
as the cutpoints are generated, but the bulk of the information must be added manually.
Larger-scale scalability is achieved by using function-level compositionality. Even recursive
functions are supported, albeit with difficulty.

The process that selects cutpoints also generates skeleton memory preservation theories for
every function analyzed. The theory files can then be opened in the theorem prover Isabelle
and the assembly loaded using the parser of Roessle, Verbeek, and Ravindran [106]. Once
that is done, a user can flesh out the invariants (Section 5.2.3) and add the necessary sets
of memory regions that the functions write to in order to complete the proofs of memory
preservation. Defining the necessary invariants for functions with complex control flow is
generally a hard task, but targeting a property such as memory preservation does reduce
the amount of work required as seen in Sections 5.4 and 5.5. The work is still not trivial,
however.

5.2 Formal Definitions

A formal definition of memory preservation requires a formal basis to work with, and that
basis is the machine model from Section 4.1.

5.2.1 Symbolic Execution for CFG-Driven Verification

While Chapter 4 provided a general overview of symbolic execution, this chapter requires a
more specific look. The step function for this methodology takes the form step : S → (S |
⊥E). It takes the current state σ to execute from and returns the state σ′ after execution
of the current instruction, which is extracted from the current state based on the value of

5.2. Formal Definitions 43

the instruction pointer rip. If some sort of exception, such as a divide by zero, occurs, the
function returns ⊥E instead.

From the machine model, we manually derived a run function runUntil : (S → B)×S →
(S | ⊥E | ⊥NT). This partial function takes as input a state predicate H and a state σ,
producing a state σ′ on successful completion. Predicate H denotes a halting condition,
which typically instructs the run function to stop at a certain instruction address, such as
that following a ret. The run function executes step until H, applied to the current state,
is true. Whenever an exception occurs, it stops and returns ⊥E. If the execution were to
continue forever without an exception or reaching the halting condition (as would happen
with an infinite loop), the function returns ⊥NT. Formally, this is achieved by a standard
least fixed point (LFP) construction.

5.2.2 Hoare Triples for Memory Preservation

Unlike the usual formulation of Hoare logic [65, 88], Hoare triples for this work take one of
the aforementioned halting conditions as their middle input rather than a program statement.
The result is that the program statement, the block of instructions to execute, is characterized
by the addresses of its initial and ending instructions, defined in P and H, rather than via
specific syntax. Thus, we have the following definition:

Definition 5.1 (Hoare triple for memory preservation). {P}H{Q} denotes that, for any
initial state that satisfies the precondition P and results in symbolic execution to the
halting condition H terminating, the resultant state will be non-exceptional and satisfy
postcondition Q.

This is formally expressed as:

{P}H{Q} ≡ ∀σ · P (σ) ∧ σ′ 6= ⊥NT −→ σ′ 6= ⊥E ∧Q(σ′), (5.1)

where σ′ = runUntil(H, σ).

5.2.3 Floyd Invariant Foundation

Loops pose a significant problem when using symbolic execution to analyze code. One of the
major issues is that they result in significant path explosion. While there are methodologies
to reduce the number of paths to execute when using loops [96, 109], those methods are
not currently formally verified and therefore not usable within Isabelle/HOL. Additionally,
deciding the loop condition on a symbolic state may involve non-determinism (such as an
event loop dependent on user input to exit), which can cause infinite execution.

Breaking up symbolic execution of loops is one method of resolving those issues. With the right
annotations, it is possible to only need to symbolically execute one iteration per loop. This
eliminates the above-mentioned loop issues. That breaking up of loops can be accomplished
using a control-flow-based approach akin to Floyd verification [51]. A state predicate that

44 Chapter 5. Control-Flow-Driven Verification

can be shown to hold for every iteration of a loop at some instruction within that loop
will function as a loop invariant, symbolically characterizing the loop’s behavior. This can
be combined with a general methodology of structured preconditions and postconditions
over annotated locations. If that methodology can show that the state at one such location
satisfying the location’s annotation will lead to any succeeding annotated locations also
having states that satisfy their annotations, a Hoare triple as defined in Definition 5.1 can be
inferred for the program as a whole (Theorem 5.3).

More formally, the Floyd invariant for a function is a partial function that takes the form
I : L ⇀ (S → B). This function maps from instruction addresses with invariants to the
corresponding state predicate that is the invariant. As a technical detail, some function proofs
require additional arguments to I that represent the arguments passed to the function.

Definition 5.2 (Floyd invariant). A Floyd invariant I holds if and only if, for any state σ,

I(locσ)(σ) −→ σ′ 6= ⊥E ∧ (σ′ = ⊥NT ∨ I(locσ′)(σ′)), (5.2)

where σ′ = runUntil((λσr · I(locσr) 6= ⊥), σ) and locσr is the current program location,
stored in rip on x86-64 systems.

In words, if the Floyd invariant holds on the current state, then running to the next annotated
location will not produce an exception. If that run terminates, then the state it produces will
also satisfy the Floyd invariant.

The following theorem states that a Floyd invariant can be used to prove properties over its
corresponding program or function as a whole:

Theorem 5.3 (Floyd and Hoare). Assume that Floyd invariant I holds and provides anno-
tations for locations l0 and lf (the initial and final location). Let halting condition H stop at
location lf ; that is, H(σ) −→ locσ = lf . Then {I(l0)}H{I(lf)}.

Proof. Remember from Definition 5.1 that

{P}H{Q} ≡ ∀σ · P (σ) ∧ σ′ 6= ⊥NT −→ σ′ 6= ⊥E ∧Q(σ′).

Though there could be any number of additional annotations between l0 and lf , Floyd [51]
showed by induction that a Floyd invariant that holds starting from some initial condition to
an intermediate annotation at l1 will also hold starting from that annotation. Thus, as I
holds, we can substitute in I(l0)(σ) for P (σ) and I(lf)(σ′) for Q(σ′) without issue, resulting
in the following statement:

I(l0)(σ) ∧ σ′ 6= ⊥NT −→ σ′ 6= ⊥E ∧ I(lf)(σ′).

As we have already assumed that I holds, we can substitute in the right side of the implication
from Definition 5.2 to obtain

σ′ 6= ⊥E ∧ (σ′ = ⊥NT ∨ I(lf)(σ′)) ∧ σ′ 6= ⊥NT −→ σ′ 6= ⊥E ∧ I(lf)(σ′).

This then simplifies to

σ′ 6= ⊥E ∧ I(lf)(σ′) −→ σ′ 6= ⊥E ∧ I(lf)(σ′),

which is trivial.

5.3. Composition 45

In essence, Floyd-style verification models a program as a CFG where each edge is an
implication.

5.2.4 Definition of Memory Preservation

The formal definition of memory preservation takes the form of a Hoare triple from Defini-
tion 5.1. Initially, there must be some predicate P that characterizes the initial state, at a
minimum by setting the instruction pointer to the first instruction of the relevant function
body. In addition, there is some set of memory regionsM that the function is allowed to write
to. M includes the stack frame and any utilized data sections from the source binary, as well
as whatever heap memory was supplied or allocated, if any. Memory preservation formulates
that any byte not within any of the regions in M has to remain unchanged throughout the
execution of that function. The notation for this formulation is shown below.

Definition 5.4 (Memory preservation). Let M be a set of memory regions, let P be a
precondition, and let H denote a halting condition. A piece of assembly demonstrates
memory preservation if and only if, for any address a and byte value v0, the following
implication holds:

(∀r ∈M · r ./ [a, 1]) −→ {P ∧ ∗[a, 1] = v0}H{Q ∧ ∗[a, 1] = v0} (5.3)

This definition states that, for every byte in memory outside of the memory region set, the
following property holds:

1. if you start the current program fragment from a state that both satisfies the specified
precondition and assumes that each byte has some value, then;

2. if you execute that program fragment to the specified halting condition, then;

3. you will end up with a state that satisfies the specified postcondition and retains the
same value for all of those bytes outside of the specified memory regions.

5.3 Composition

As stated above, composition is used here for scalability. On the function call level, compo-
sitionality ensures that, when a function is called, a successful verification effort over that
function can be reused if preexisting or developed later if need be. Taking this approach
also allows minimizing symbolic execution even in non-loop situations, a form of internal
compositionality.

5.3.1 Intra-Function

Consider the following pseudocode, which sequentially executes an if-statement and some
program P :

46 Chapter 5. Control-Flow-Driven Verification

Listing 5.1: Simple pseudocode
1 if b then x else y; P

The assembly corresponding to this code can be verified using symbolic execution. If executed
in full, the symbolic execution engine would require first considering the case where b is true,
executing x and subsequently symbolically executing program P . It would then consider
the case where b is false, executing y followed by P . Program P would thus be symbolically
executed twice. This repetition can be avoided by placing a cutpoint at the start of each
block where control flow converges, resulting in all instructions being symbolically executed
only once each. Each cutpoint, however, requires a state predicate contained in a Floyd
invariant.

Reasoning about composition with the Hoare triples specific to this chapter requires a bit of
work, as standard composition does not apply to Hoare triples that use halting conditions.
Doing so is still possible, however.

Theorem 5.5 (Composition rule). Halting Hoare triples are compositional with respect to
stronger halting conditions:

{P}H{Q} {Q}H ′{R} ∀σ ·H ′(σ) −→ H(σ)
{P}H ′{R}

Proof. Consider a symbolic run that executes until halting condition H ′. It is possible to
break this run into two parts by first running until a halting condition H and then until H ′.
This requires that H ′ is stronger than H; that is, H ′ implies H. Doing so ensures that the
run first stops at H before it stops at H ′ (as it is possible for H to hold when H ′ does not,
but not the other way around).

Example 5.6. Now consider the block of assembly that could be generated for Listing 5.1.
Let lf denote the final location of the block while lP denotes the initial location of program P .
Theorem 5.5 can be used by instantiating H to halt at either location lf or lP and instan-
tiating H ′ to halt at lf . As long as programs x and y do not contain gotos or some other
instruction that violates expected control flow, condition H will ultimately be equivalent to
just halting at lP . As H ′ is stronger than H, compositionality is possible.

5.3.2 Function Calls

Generally, compositionality over function calls requires proving that the stack pointer, after
execution of a return, has the same value it did before the corresponding function call.
Practically, this means proving that the body of the function results in rsp = rsp0 + 8.
This can be proven even for functions with optimized tail calls that just swap the final
call+ret combo for a jump as long as the body of the called function is treated as part of
the callee.

Example 5.7. Consider a function f starting in a text section at location l0. The function
is called from a different text section by the instruction call f at location lcall . This means

5.4. Examples 47

the return address for the call is lcall + 5.1 After execution of call f, the program will
be at location l0 and the stack pointer, rsp, will have some value rsp0. In order to apply
compositionality to function calls, the pre- and postcondition have to meet the following
requirements. First, the precondition must imply that the return address is pushed on the
stack (a task performed by call): ∗[rsp0, 8] = lcall +5∧rsp = rsp0. Second, the postcondition
must imply that after ret, the net effect of the function body is that the stack pointer has
been incremented by 8: rsp = rsp0 + 8∧ loc = lcall + 5. Note that call itself decrements the
stack pointer by 8, so this implies the net effect, from the point of view of the caller, is that
the stack pointer is unchanged. The postcondition must also show that the location has been
set back to the return address, lcall + 5.

Besides the stack pointer, modern calling conventions have other callee-saved registers, such
as rbp and r12-r15. It is generally assumed that the net effect of a function call does not
touch these registers. Consider a situation in which rbp contains an address, which will be
used as the target of a write after a function call. In order to prove memory preservation,
rbp must be shown to be preserved. Generally, this is easy to prove by strengthening the
pre- and postcondition with a conjunct rbp = rbp0. The proof is generally not complicated,
as these callee-saved registers are pushed onto the stack at the beginning of functions that
use them and popped off at the end.

In many cases, users of a verification methodology over functions will encounter calls to
functions that are not included in the verification effort. These may be system calls or simply
functions not currently under consideration due to unsupported features or lack of time.
External functions are simply assumed to have correct behavior and are thus left out of the
existing analysis, leaving those functions in the TCB. One issue that may occur is a desired
function making an optimized tail call to an external function, which cannot be treated as
part of the callee and prevents verification. One possible solution, used in the next chapter,
is to revert the jump to call+ret. As the underlying function is assumed to be correct, this
will result in the proper rsp restoration.

5.4 Examples

The following sections present some basic explanation of the procedure used in this chapter
via two simple functions. The first, in Section 5.4.1, is a non-recursive function that features
a loop. The second, in Section 5.4.2, gives an example of a recursive function and shows why
those are difficult to reason about.

5.4.1 Non-recursive Loop Example: pow2

This simple loop-based function, shown in Listing 5.2, raises two to the power of its argument.
The assembly code was obtained by compiling a C program containing the function with GCC
7.2.0 and disassembling it using the modified reassembly analysis mentioned in Section 5.1.

1the call instruction is five bytes long

48 Chapter 5. Control-Flow-Driven Verification

Listing 5.2: pow2 in C
1 unsigned long pow2(unsigned exponent) {
2 unsigned long a = 1;
3

4 for (unsigned i = 0; i < exponent; ++i) {
5 a += a;
6 }
7

8 return a;
9 }

The input is stored in edi. The function uses memory in five places, all on the stack. These
are expressed relative to the original value of the stack pointer rsp0: 1. the caller’s rbp at
rbp = rsp0 − 8 (eight bytes); 2. the argument to the function at rbp − 0x14 (four bytes);
3. the accumulation variable and return value at rbp− 8 (eight bytes); 4. the counter variable
at rbp−0xc (four bytes); 5. and the address of the location to return to at rsp0. The memory
region for this function is thus rs = [rsp0 − 28, 36]. Assigning region rs with ID is and the
untouched region [a, 1] with ID ia, parent relationships can then be established as shown
below:

parent([rsp0, 8], is, rs) parent([rsp0 − 20, 4], is, rs)
parent([rsp0 − 8, 8], is, rs) parent([rsp0 − 28, 4], is, rs)
parent([rsp0 − 16, 8], is, rs) parent([a, 1], ia, [a, 1])

For the memory preservation proof of this function, we chose to associate annotations at
the start of the function, an instruction that broke the loop, and the return address of
the function (a logical variable, as the caller of the function is unspecified for this proof).
Figure 5.2 shows the Floyd invariant in CFG form for this function. The invariant carries
through the preservation of memory, showing that region [a, 1] maintains its value throughout.
The equalities over rbp and rsp are used by the memory region reasoner. For compositional
purposes, as described in Section 5.3, the function is also shown to preserve the value of
the stack pointer. Given the parent regions presented above, the proof that the Floyd
invariant holds is executed automatically using the symbolic execution engine described in
Chapter 4.

5.4.2 Recursion: Factorial

The factorial operation provides a simple example of recursion. The basic definition of
factorial is n! = ∏n

i=1 i. This results in a number that is the product of the numbers from 1
to n. Expressed in recursive form, that definition is:

n! =

n ∗ (n− 1)! if n > 0
1 if n = 0

(5.4)

5.4. Examples 49

Listing 5.3: pow2 in x86-64 assembly
0 pow2:
1 push rbp ; Size:1
2 mov rbp , rsp ; Size:3
3 mov dword ptr [rbp - 0x14], edi ; Size:3
4 mov qword ptr [rbp - 8], 1 ; Size:8
5 mov dword ptr [rbp - 0xc], 0 ; Size:7
6 jmp .label_10 ; Size:2
7 .label_11:
8 shl qword ptr [rbp - 8], 1 ; Size:4
9 add dword ptr [rbp - 0xc], 1 ; Size:4

10 .label_10:
11 mov eax , dword ptr [rbp - 0xc] ; Size:3
12 cmp eax , dword ptr [rbp - 0x14] ; Size:3
13 jb .label_11 ; Size:2
14 mov rax , qword ptr [rbp - 8] ; Size:4
15 pop rbp ; Size:1
16 ret ; Size:1

1 : ∗[a, 1] = v0 ∧ rbp = rbp0 ∧ rsp = rsp0 ∧
∗[rsp0, 8] = ret_addr

12 :
∗[a, 1] = v0 ∧ rbp = rsp = rsp0 − 8 ∧
∗[rsp0 − 8, 8] = rbp0 ∧
∗[rsp0, 8] = ret_addr

rsp := rsp− 8
rbp := rsp . . .

ret_addr : ∗[a, 1] = v0 ∧ rbp = rbp0 ∧ rsp = rsp0 + 8

rsp := rsp + 16
rbp := rbp0

Figure 5.2: Floyd invariant for pow2 in CFG form

50 Chapter 5. Control-Flow-Driven Verification

Listing 5.4: Factorial in C
1 uint64_t factorial(uint8_t n) {
2 if (n) {
3 return n * factorial(n - 1);
4 }
5 return 1;
6 }

1 :

∗[a, 1] = v0 ∧ dil ≤ n ∧
rsp = rsp0 − 48 ∗ (n− dil) ∧
(dil 6= n −→ rbx = dil + 1) ∧
multiplicandsPushed(32, rsp0, n, dil) ∧
retAddrsPushed(0, rsp0, n, dil)

15 :

∗[a, 1] = v0 ∧ rbx > 0 ∧ rbx ≤ n ∧
rsp = rsp0 − 48 ∗ (n− rbx + 1) + 8 ∧

multiplicandsPushed(24, rsp0, n, rbx− 1) ∧
retAddrsPushed(8, rsp0, n, rbx− 1)

if dil = 0
rsp := rsp + 8

ret_addr : ∗[a, 1] = v0 ∧ rsp = rsp0 + 8

if rbx = n
rsp := rsp + 48

if dil 6= 0
rsp := rsp− 48
push rbx
rbx := dil
rdi := dil− 1

if rbx 6= n
rsp := rsp + 48
pop rbx

Figure 5.3: Floyd invariant for factorial in CFG form

The C equivalent of that function is shown in Listing 5.4. The assembly snippet shown in
Listing 5.5 is again the result of a function compiled with GCC 7.2.0 and disassembled by the
tweaked reassembly analysis [129]. In this case, the function performs a recursive factorial
calculation on the value n stored in dil (the lowest eight bits of edi/rdi). It essentially
consists of two loops, one loop to perform storing the integers from n to 2 on the stack as the
function is called recursively and the second to multiply all those values together as each call
returns.

As with pow2, the proof for this function relies on an rsp0, though in this case that value
specifically refers to the value of rsp for the first/topmost call to the recursive function. The
memory locations operated on by this function are similar to those of pow2, but the memory
locations themselves cannot be directly offset from rsp0 due to the function’s recursive nature.
The set M of separated parent regions is characterized by the following assumptions:

5.4. Examples 51

Listing 5.5: x86-64 assembly of factorial example
0 factorial:
1 push rbp
2 mov rbp , rsp
3 push rbx
4 sub rsp , 0x18
5 mov eax , edi
6 mov byte ptr [rbp - 0x14], al
7 cmp byte ptr [rbp - 0x14], 0
8 je .label_12
9 movzx ebx , byte ptr [rbp - 0x14]

10 movzx eax , byte ptr [rbp - 0x14]
11 sub eax , 1
12 movzx eax , al
13 mov edi , eax
14 call factorial
15 imul rax , rbx
16 jmp .label_13
17 .label_12:
18 mov eax , 1
19 .label_13:
20 add rsp , 0x18
21 pop rbx
22 pop rbp
23 ret

52 Chapter 5. Control-Flow-Driven Verification

∀m ≤ n · (im, [rsp0 + 48 ∗m− (n ∗ 48)− 40, 40]) ∈M (5.5a)
∀m ≤ n · (i′m, [rsp0 + 48 ∗m− (n ∗ 48), 8]) ∈M (5.5b)

(ia, [a, 1]) ∈M (5.5c)

The first assumption models all stack frames of size 40. The second models the parts of
the stack where return addresses are pushed. The parent relations are defined in a similar
way.

The following functions assist in characterizing the stack frame for any particular call in the
recursive chain. To start with, multiplicandsPushed characterizes the multiplicands
currently stored on the stack for any particular recursive call, both in the initial recursing
loop as well as in the second loop as the recursive calls return. The following functions,
retAddress and retAddrsPushed, establish that return address 15 is pushed to
the correct memory location for every call except the first. For the first call, the topmost
stack frame, the initial return address must also be properly stored.

multiplicandsPushed(offset, rsp0, n, x) ≡
∀i · n > x ∧ i < n− x− 1 −→ ∗[rsp + i ∗ 48 + offset, 8] = i+ 1 + rbx (5.6)

retAddress(rsp, rsp0, offset, n, x, i) ≡
if rsp + (n− x− i) ∗ 48− offset = rsp0 then ret_addr else 15 (5.7)

retAddrsPushed(offset, rsp0, n, x) ≡
∀i ≤ n− x · ∗[rsp + (n− x− i) ∗ 48− offset, 8] = retAddress(rsp, rsp0, offset, n, x, i)

(5.8)

The Floyd invariant for the factorial function is shown in Fig. 5.3 and Eqs. (5.6) to (5.8). The
first loop, from location 1 back to 1, goes deeper into recursion, pushing values onto the stack
until dil becomes 0. As stated, multiplicandsPushed and retAddrsPushed
characterize the stack frame for every call, ensuring that all necessary information is properly
stored. Once dil = 0, the function has executed its final recursion and control reaches
location 15. The second loop then pops values of the stack until n = rbx, at which point
there are no more recursive stack frames to pop and the final result of the factorial operation
can be returned.

A Hoare triple can now be derived from the the Floyd invariant. This is done by instantiating
variable n with dil. Doing so simplifies the precondition, as initially, no values or return
addresses are pushed other than the upmost return address. The resulting Hoare triple
becomes:

{∗[a, 1] = v0 ∧ rsp = rsp0 ∧ ∗[rsp0, 8] = ret_addr}
H
{∗[a, 1] = v0 ∧ rsp = rsp0 + 8 ∧ loc = ret_addr}.

(5.9)

This, combined with the regions presented above as assumptions, provide us with our theorem
of memory preservation.

5.5. Application: HermitCore 53

5.5 Application: HermitCore

The concept of unikernels has existed in the world of virtualization for over five years now.
The term “unikernel” can refer to any single-address-space program. All that is required is
that it be compiled with a library that provides all kernel code necessary to run the program.
This bypasses the need for a separate OS [82], allowing the program to be used directly with
a hypervisor or even run on a bare metal system with no additional support. This allows for
reduced overall size and a reduction in attack surface by leaving out those kernel components
that are not necessary.

Slightly implied by the mention of hypervisors, unikernels are intended for use in the same
situations as traditional virtual machines (VMs) or Docker containers. They are meant
for simultaneous juxtaposed execution in a virtualized setting, with many single-purpose
unikernels all performing their own tasks in isolation. This makes unikernels an interesting
target for verification, as they aim to provide a high speed and real-time environment for
cloud software.

The unikernel library HermitCore [78] was chosen to demonstrate the applicability of this
methodology due to its established functionality and decent size. Designed for the x86-64 ISA,
HermitCore is mostly written in C. While it does use some inline assembly, not uncommon in
kernel code, that is no issue for the assembly-level methodology presented here. The subset
of HermitCore functions that were verified feature features such as loops, pointers, complex
data structures, function calls, and recursion. The 63 functions analyzed were generally
compiled unoptimized, but twelve of those functions were also analyzed in their optimized
forms. This was done to show that the more complex code produced by optimizing compilers
can also potentially be handled. The proofs and all associated code are available on Figshare
[16].

5.5.1 Functions Analyzed

The functions from Hermitcore that were selected for analysis are summarized in Table 5.1.
The dequeue_* functions involve operations on a generic circular queue or ring buffer. The
buddy_* functions, meanwhile, are internal to HermitCore’s implementation of kmalloc
. HermitCore’s task scheduler is assisted by the linked list manipulation task_list_*
functions as well as various functions from tasks.c. Next, the vring_* functions are
involved with virtual I/O operations. Various system call wrappers from syscall.c were also
handled, as well as eight functions from spinlock.h. In addition to those sets of functions,
the following string.h functions were verified: memcpy, memcmp, memset, strlen, strcpy,
strncpy, strcmp, and strncmp.

The string functions were of particular interest due to the implicit assumption of null
termination for those functions that do not have an explicit ending count. Those functions,
the ones whose names do not contain n, require an explicit assumption of null termination
in their verification process. Otherwise they would continue to execute past the desired
end of the supplied arrays, reading/writing memory until a memory error occurs. As the

54 Chapter 5. Control-Flow-Driven Verification

Table 5.1: Summary of functions analyzed

Functions Count SLOC Insts† Loops Rec. Pointer
args

Globals Subcalls -O3

dequeue_* 3 46 159 3 3 3
buddy_* 5 67 225 1 1 1 3 3 3
task_list_* 3 43 128 3 3
vring_* 3 19 80 1 3
string.h 8 81 280 8 8
syscall.c 23 293 857 5 19 7 17
tasks.c 10 122 396 2 3 9 4
spinlock.h 8 89 254 2 8 2 6
Total 63 760 2379 18 1 46 21 33 12
† Non-optimized count

memory model used in this dissertation does not support detection of access violations for
unallocated areas of memory, that would effectively mean an infinite loop. Those functions
with an explicit iteration limit do not need to assume null termination, as they will eventually
terminate even if a null character is not encountered. Due to the lack of access violation
support, we assume the arrays are of sufficient length even if they do not possess a null
terminator within the specified range.

All of these functions were isolated and then compiled into binaries. Because of this, functions
marked as static inline had those qualifiers removed. This prevented them from being
eliminated when compiled with optimizations, as most of the functions would otherwise have
their bodies inlined.

Figures 5.4a and 5.4b show the CFGs for two of the HermitCore functions verified here,
dequeue_push and buddy_large_avail. The former pushes a value onto a generic array-
based queue while the latter checks for the smallest available reused memory block for a
given allocation size. The former, lacking any loops, requires only pre- and postconditions
(though additional invariants may be added). In contrast, the latter function requires a loop
invariant in addition to the pre- and postconditions.

5.6 On Usability

The three main aspects of per-function user interaction for this methodology are 1. defining
a Floyd invariant, 2. strengthening the precondition,2 and 3. finishing the proof of memory
preservation. The functions analyzed in the above case study provided some significant insight
into the usability of those aspects.

2Includes adding additional memory regions and region relationships

5.6. On Usability 55

129 :
∗[a, 1] = v0 ∧ rsp = rsp0 ∧
rbp = rbp0 ∧ rdi = deqptr ∧
∗[rsp0, 8] = ret_addr

ret_addr :
∗[a, 1] = v0 ∧
rsp = rsp0 + 8 ∧
rbp = rbp0

. . .

(a) dequeue_push

0 : ∗[a, 1] = v0 ∧ rsp = rsp0 ∧
rbp = rbp0 ∧ ∗[rsp0, 8] = ret_addr

21 :

∗[a, 1] = v0 ∧ rsp = rsp0 − 8 ∧
rbp = rsp0 − 8 ∧
∗[rsp0 − 8, 8] = rbp0 ∧
∗[rsp0, 8] = ret_addr

rsp := rsp− 8
rbp := rsp

ret_addr :
∗[a, 1] = v0 ∧
rsp = rsp0 + 8 ∧
rbp = rbp0

rbp := ∗[rsp, 8]
rsp := rsp + 16

(b) buddy_large_avail

Figure 5.4: Floyd invariants for the described case study functions in CFG form

5.6.1 Defining the Invariant

While restricting the verification effort to memory preservation does reduce the effort required
to provide Floyd invariants, it does not eliminate it. This is more of a problem for loops
with complex behavior and is a significant problem for recursive functions. With non-
looping control flow, the primary effort required for invariant predicates is showing how
input arguments are carried through the program (stored on the stack, in registers, etc.).
With loops, the exact formulation relies on development of a symbolic representation of the
behavior of the loop as it relates to memory accesses.

Meanwhile, recursive functions that cannot be flattened into tail recursion [100], such as
those described in this chapter, are equivalent to two loops operating on the stack. Of course,
every loop needs an invariant. The first loop invariant must characterize every call of the
recursive function, which pushes data onto the stack, and the second every return, which
pops data off.

At a minimum, the individual stack and frame pointers, as well as all the return addresses,
must be shown to be preserved for their extant, being pushed on and popped off the stack.
Any additional stored conditions that may affect memory usage must be kept track of as
well.

On a nicer note, an advantage of the requirements for proofs over recursion is that they
essentially require showing termination of the recursion and thus the (conceptual) avoidance
of stack overflows. Proving lack of overflow for a specific stack size would require some
additional clauses in the analysis.

56 Chapter 5. Control-Flow-Driven Verification

5.6.2 Strengthening the Precondition

Another aspect of Floyd invariant development that is not easily determined ahead of time is
how the function precondition must be strengthened. Making reasoned guesses about the
necessary precondition clauses is one way to proceed, and source code annotations as well
as reference documentation may provide additional help, but sometimes it is necessary to
just symbolically execute until non-determinism is encountered. At that point, the cause of
the non-determinism can be identified and the precondition can be strengthened in such a
way so as to eliminate that non-determinism. Because this proof methodology works on the
assembly level, it may well expose implicit or undocumented preconditions.

Formulation of the memory region set M as well as parent relationships, if necessary, are
also generally manual. If a necessary region is not present, symbolic execution will result in
non-determinism, requiring another round of user input.

5.6.3 Finishing the Proof

After symbolic execution for a basic block has completed, a proof that the resulting symbolic
state satisfies the Floyd invariant is generally required. In most cases, that proof can be
handled by Isabelle/HOL using standard off-the-shelf libraries, either ones included with
Isabelle or ones from the Archive of Formal Proofs [44] (though not necessarily efficiently).
Recursion is the primary exception, with the proofs of stack and frame pointer preservation
requiring significant ITP over word arithmetic.

5.7 Summary

This chapter covered one method for formal verification of memory preservation in x86-64
binaries, showing that functions in a binary restrict themselves to certain regions of memory.
The approach here aimed to automate verification while still allowing user interaction
wherever necessary. As a semi-automated approach, it requires setting up an invariant, which
traditionally is a hard problem in itself. Requirements for memory preservation invariants
were provided for several examples. For recursive functions, more involved invariants are
required, along with ITP to show preservation of the stack and frame pointers. Invariants
may include preconditions necessary for excluding exceptional behavior, which can include
stack or buffer overflows. Such preconditions can be exposed directy by applying the
methodology to a disassembled binary instead of deriving them from documents or source
code annotations.

The approach was applied to functions of HermitCore, a unikernel OS. Memory preservation
was formally proven for functions with loops, recursion, C structs and unions, and dynamic
memory operations. All verified functions were verified with non-optimized compilation, and
some had their optimized versions verified as well.

Chapter 6

Syntax-Driven Verification

While the methodology presented in the previous chapter for verifying memory preservation
works well, it is not ideal. The need to manually formulate regions and the amount of work
required for developing invariants reduces potential scalability.

In order to deal with those downsides, this chapter introduces the concept of formal memory
usage certificates (FMUCs) generated by untrusted, informal tools. FMUCs consist of two
main components: theorems on memory preservation and proof ingredients. The proof
ingredients are assumptions on memory layout, control flow information, and invariants
generated to reduce the amount of work required from end users.

Certificate generation is presented in Section 6.1, while the process of verification in Isabelle is
documented in Section 6.2. A full example of FMUC usage can then be found in Section 6.3.
That example could theoretically overwrite its own return address due to its pointer arguments,
causing CFI issues. The associated FMUC provides preconditions to prevent such cases along
with a formal proof of return address preservation under those conditions. Following the
example in Section 6.4 is an in-depth case study on the Xen Project hypervisor [29]. In total,
FMUCs were generated and proofs discharged in Isabelle for 251 Xen functions.

My primary contributions to the certificate generation and verification approach presented in
this chapter include the Hoare rules developed for memory preservation as well as the VCG
used to apply those rules to syntactic control flow (SCF) in Isabelle (Section 6.2). I also
greatly expanded the code for full translation of the FMUCs into the Isabelle/HOL language
and helped adapt the SCF into a form suitable for verification in Isabelle (Section 6.2.1).
Additionally, I contributed to invariant generation (Section 6.1.3) and performed much of the
verification work for our large case study, presented in Section 6.4.

6.1 FMUC Generation

FMUCs require the assembly code of a program as input. That source assembly could be

57

58 Chapter 6. Syntax-Driven Verification

Assembly
Control
Flow
Graph

Syntactic
Control
Flow

6.1.1
Memory
Regions
and

MRRs

6.1.2 Invariants6.1.3 Certificate

Figure 6.1: Overview of FMUC generation

obtained from a binary using a disassembler, such as objdump, IDA1, Ghidra’s decompiler2, or
Capstone [92]. If source code is available, it could be generated directly by a compiler instead.
Each function specified for verification receives an FMUC; those that are not included in the
verification effort, including system calls and functions from dynamic libraries, can be treated
as black boxes, the usage of which is described in Section 6.2.5.

The general procedure for generating FMUCs, laid out in Fig. 6.1, can be broken up into three
main parts. The first part involves control flow extraction from the supplied assembly using
a CFG analysis similar to angr’s CFGFast [117], ultimately producing an SCF (the details
of which are presented in Section 6.1.1). Afterwards, per-basic block symbolic execution is
utilized to generate the set of memory regions read and written by the function in question.
This was detailed in Chapter 4. To eliminate duplicates and produce MRRs showing which
regions overlap or are enclosed or separate, the region sets are then fed to the SMT solver Z3
[41]. Symbolic execution is also used in the process of generating the pre- and postconditions
for each basic block, elaborated on in Section 6.1.3.

With the exception of MRR generation, none of the steps in this procedure are included
in the TCB. The process of verifying the generated FMUC (see Section 6.2) will fail if
there are issues in control flow extraction, SCF generation, informal symbolic execution, or
invariant generation. MRR generation is an exception because the MRRs are formulated
as assumptions, and thus inconsistent MRRs will result in vacuous proofs. This is why the
methodology relies on Z3 for MRR generation; using a known-reliable tool greatly reduces
the possibility of issues.

6.1.1 Control Flow Extraction

As described in Section 3.1.2, in order to apply a VCG that utilizes Hoare rules to verify a
Hoare triple, there must be some syntactic structure to apply those rules to. This chapter
uses a syntactic representation of control flow called SCF in part for that purpose. SCF
expresses assembly programs as a combination of basic blocks, branches, loops, and function
calls. The following grammar provides a description of SCF produced by the extraction code.
Each basic block is represented by the polymorphic type β, while branching conditions are

1https://www.hex-rays.com/products/ida/index.shtml
2https://ghidra-sre.org/

https://www.hex-rays.com/products/ida/index.shtml
https://ghidra-sre.org/

6.1. FMUC Generation 59

represented using the polymorphic type Φ.

〈scf〉 |= 〈scf〉 ; 〈scf〉 | Block β | Skip | Continue | Break 〈br〉
| If Φ Then 〈scf〉 Else 〈scf〉 Fi | Loop 〈scf〉 Pool 〈res〉 (6.1)

〈br〉 |= ID | ε (6.2)
〈res〉 |= Resume {(ID,〈scf〉), . . . } | ε (6.3)

Loops in this formulation have no exit condition; instead, they rely on having one or more
internal Break statements, which may have an identifier to indicate how the loop was exited,
for termination. Continues function the same as in C, causing loop execution to skip to the
next iteration. For loops that have multiple exit points, Resume statements provide different
code to execute based on which exit was taken as indicated by the Break identifier.

Notably, the above data structure does not explicitly contain control flow statements such as
goto or throw/catch. Unconditional jumps like gotos make code harder to reason about in
a structured way and can be modeled by the existing syntactic constructs, while structured
exception handling as used in C++ is generally provided by external function calls.

Example 6.1. Figure 6.2 provides an example of SCF extracted from a CFG. The CFG
in Fig. 6.2a can be seen to have two branching conditions that do not involve loops, one
from Block 0 with condition f0 and one from Block 7 with condition f7. This leads to if
statements with those conditions being added to the SCF in Fig. 6.2b after their respective
blocks. The one loop present has two exit points. If condition f1 is false after execution of
Block 1, the loop will exit to Block 4, while Block 2 will exit to Block 3 if f2 is false. This
leads to the Break statements present in the extracted SCF in their respective conditional
statements annotated with the IDs for their associated exit blocks. Those two exit points
also result in the generation of a Resume clause indicating where those Breaks exit to.

Restrictions

There two important restrictions on the current control flow extraction approach, the more
severe of which is the lack of support for indirect branching. The CFG analysis done by
the current extraction algorithm is not strong enough to handle indirect branching at the
moment. In some cases, the set of possible branches can be determined based on the local
function context, but the result of an indirect branch is often based off of input arguments,
as well. Even if the result set might be determinable with static analysis, it would have to be
interprocedural, and branch destinations based on external input cannot be determined.

Finally, as the if-then-else statement provides the sole form of branching control flow, the
algorithm is not optimal due to the duplication of blocks to fit less structured control flow
into a more structured model. In the worst case, it can result in SCF explosion, described
below.

60 Chapter 6. Syntax-Driven Verification

0

1

2

3
4

5

6

7

8

9

f0 ¬f0

f1

¬f1

f2

¬f2

¬f7

f7

(a) Example CFG

Block 0;
If f0 Then

Loop
Block 1;
If f1 Then

Block 2;
If f2 Then Continue Else Break 2 Fi

Else
Break 1

Fi
Pool Resume {(2, Block 3), (1, Block 4)};
Block 5

Else
Block 7;
If f7 Then Skip Else Block 8 Fi;
Block 9

Fi;
Block 6

(b) Syntactic Control Flow

Figure 6.2: Example of control flow extraction

SCF Explosion

The algorithm is not optimal in terms of generated SCF size as certain basic blocks may be
duplicated. There are two situations where basic block duplication occurs, one less common
than the other. The less common situation is when loop having multiple entry points, which
can occur in situations that involve less-structured control flow, such as a C program that
jumps into a loop using goto. Such situations are relatively uncommon, even in optimized
code. If it does happen, the entire loop must be duplicated. The more common situation, by
contrast, involves complex conditional branching that can occur even without loops.

Example 6.2. Figure 6.3 shows a small example of branching control flow that results in
Block 3 being duplicated. That block could itself be an even more complicated subgraph,
possibly leading to exponential code duplication.

6.1.2 Symbolic Execution for Generation

In Section 6.1.1, the semantics of assembly were expressed in terms of control flow between
basic blocks. This section now covers the symbolic execution of those individual blocks. The
Haskell symbolic execution engine takes as input a data structure of type scf(B,EF), which
is formulated over basic blocks, and produces scf(P(ASP), ESP), P which is formulated over
sets of assignments. It keeps track of all used memory regions, both the actual regions used

6.1. FMUC Generation 61

0 1 2 3 4
f0

¬f0

f1

¬f1

f2

¬f2

(a) CFG

Block 0;
If f0 Then Block 1;

If f1 Then Block 2;
If f2 Then Block 3
Else Skip Fi

Else Block 3 Fi
Else Skip Fi;
Block 4

(b) SCF

Figure 6.3: Example of code duplication

by instructions as well as merged regions, in order to supply those regions as part of an
FMUC.

Generating Memory Region Relations

Because symbolic execution uses symbolic state, the relations of enclosure, separation, and
overlap, defined in Section 4.2.1, must be determined for symbolic expressions. Unfortunately,
there is no single solution, no one decision procedure, that can determine these properties for
all symbolic expressions automatically.

As an example of the potential issues that can occur, take the completely symbolic regions
r0 = [a0, s0] and r1 = [a1, s1]. Without additional information, we cannot determine any
relations for these regions. If they are possibly different then they must be treated as different
regions, while if they necessarily overlap then they must be treated as a single merged
region.

To deal with such symbolic issues, the three aforementioned relations of enclosure, separation,
and overlap are formulated as SMT problems. The SMT formulations are negations of the
equations presented in Definitions 4.3 and 4.4; the result states the property holds if the
resultant problem is unsatisfiable. These SMT problems can be solved by Z3 [41] for a wide
range of expressions over bitvectors using the QF_UFBV logic [102, 122]. Z3 is also used in
this work for determining the sign of two values in the region merge algorithm, originally
presented in Definition 4.5. Additionally, reads of overlapping regions may require merging
and separation analysis as described in Section 4.2.1, so they also rely on Z3.

The result of evaluating the above SMT problems over all pairs of memory regions for a
basic block, each region being given a unique ID, is two sets with element type N× N, enc
and ovl. Every element (i0, i1) in enc indicates that the region with ID i0 is enclosed by the
region with ID i1. Every element (i0, i1) in ovl indicates that the two regions with those IDs
overlap. Those two sets are the MRRs for the block, and using them as assumptions allows
for efficient execution of the rewrite rules in Section 4.2.2.

62 Chapter 6. Syntax-Driven Verification

6.1.3 Invariant Generation

Invariants, formalized as sets of assignments of the aforementioned type ASP, are generated
by starting from a precondition for the entry point of the function and propagating it
throughout.

The initial precondition of the function as a whole is generated by including initial symbolic
values for all registers that are read before they are written as well as all used memory regions
that are not enclosed in another. The concrete initial value of the instruction pointer, rip,
must also be included, and the (symbolic) address to return to after function completion must
be indicated as stored on the stack. In Haskell, the conditions in question are represented as
sets of assignments.

Example 6.3 (Initial invariant). To reuse Example 4.6, its initial precondition would be:

φ = {rip := a0, rsp := rsp0, [rsp− 8, 8] := v0, [rsp, 8] := ret_addr}. (6.4)

Propagation requires performing substitution, which is defined over assignments, state parts,
and expressions, all with respect to invariant φ.

subst(φ, sp := v) = subst(φ, sp) := subst(φ, v) (6.5a)
subst(φ, sp) = if ∃v · (sp, v) ∈ φ then v else sp (6.5b)

subst(φ, e0© e1) = if ∃v · (e0© e1, v) ∈ φ then v else subst(φ, e0)© subst(φ, e1) (6.5c)
unary ops = . . .

ternary ops = . . .

Algorithm 6.2 performs invariant propagation. Each block is modified by applying all
applicable substitutions with respect to φ. Invariant φ is then modified based off of the
semantics of the block. Treating α as the set of assignments in the block, φ is modified by
taking the subset of substitutions where the substitutees are overwritten by α and combining
them with the subset of substitutions that were completely unmodified by any assignment
in α:

post(φ, α)3 ≡ {(v, e) | (v := e ∈ α ∧ (v,_) ∈ φ) ∨ ((v, e) ∈ φ ∧ (v, e) is unmodified by α)}.
(6.6)

Example 6.4 (Invariant propagation). Once again consider Example 4.6. Propagation of
the initial precondition through the single basic block produces the following postcondition:

φ = {rip := ret_addr,
rsp := rsp0 + 8,

[rsp0 − 8, 8] := 0xAABBCCDD • 〈31, 16〉v0 • 0xEEFF,
[rsp0, 8] := ret_addr}.

(6.7)

6.1. FMUC Generation 63

Algorithm 6.2 Invariant propagation
Require: Input is of type scf(P(ASP), ESP)
Ensure: Output is a tuple of possibly-updated φ and SCF updated with current φ: ASP ×

scf(P(ASP), ESP)
function prop(φ, Block α)

φ′ ← post(φ, subst(φ, α))
return (φ′, Block (α annotated with φ))

end function
function prop(φ, α0 ; α1)

(φ′, α′0)← prop(φ, α0)
(φ′′, α′1)← prop(φ′, α1)
return (φ′′, α′0 ; α′1)

end function
function prop(φ, If f Then α0 Else α1 Fi)

(φ0, α
′
0)← prop(φ, α0)

(φ1, α
′
1)← prop(φ, α1)

φ′ ← φ0 ∩ φ1
return (φ′, If subst(φ, f) Then α′0 Else α′1 Fi)

end function
function prop(φ, Loop α Pool)

(φ′, α′)← prop(φ, α)
if φ ⊆ φ′ then

return (φ, Loop α′ Pool)
else

return prop(φ ∩ φ′, Loop α Pool)
end if

end function
function prop(φ, Resume resumes)

for all αi ∈ resumes do
(φ′i, α′i)← prop(φ, αi)

end for
φ′′ ← ⋂

φ′

return (φ′′, Resume zip(i, α′))
end function
function prop(φ, α) . Default case

return (φ, α)
end function

64 Chapter 6. Syntax-Driven Verification

Isabelle/HOL

Assembly

Certificate

OK/unproven

Figure 6.4: Overview of FMUC verification

Invariant propagation is straightforward for sequencing and if statements, with sequencing
simply chaining invariant propagation and if statements producing an invariant that is the
common result of propagating the initial invariant down both branches.

In contrast, a loop with body α requires continual propagation until the invariant φ stabilizes,
possibly by becoming ∅. This stabilization is identified by checking if φ is a subset of its
propagated self. If it is, then prop returns the propagated φ and a new loop with the
propagated body. Otherwise, the original loop is propagated again with the intersection of φ
and its propagated self. This process effectively computes the loop invariant as the greatest
subset of the initial invariant that is preserved by execution of the loop body. For loops that
have multiple exits, each exit’s resume is propagated with the invariant at the point of exit
evaluation. In a similar fashion to the process for if statements, the invariants that result
from individual resume propagation are intersected to produce a singular invariant for all
resumes, which is then returned along with all of the propagated resumes.

6.2 FMUC Verification

This section presents verification of an FMUC as shown in Fig. 6.4, one of the primary
contributions for this chapter as mentioned in its preamble. Both the FMUC and the original
assembly are loaded into Isabelle/HOL, where the memory preservation theorem is then
proven using the proof ingredients provided by the FMUC. By this method, which requires a
step function that models the semantics of the assembly instructions and a process to apply
it repeatedly, the FMUC’s memory preservation Hoare triple can be verified.

3This is a different post from that used to identify CFG block children.

6.2. FMUC Verification 65

6.2.1 Syntactic Control Flow in Isabelle/HOL

As described previously, syntactic control flow is a representation of the control flow of a
function in terms of syntactic structures such as basic blocks, loops, and if-then-else statements.
While very similar to the SCF used when generating FMUCs, there are some modifications
that must be made when the generated SCFs are to be loaded into Isabelle/HOL. These
modifications are required due to subtle differences in the semantics of the generating tool
versus the verifying tool, and are required to properly support the Hoare rules described in
Section 6.2.4 below.

In the Isabelle/HOL representation, there are no Breaks or Continues; any occurrences
of such statements are translated to Skip. This does mean that programs that cannot be
easily transformed such that that translation does not modify the overall semantics are
not easily handled in this framework. However, none of functions encountered in the case
study presented in Section 6.4 had that issue, so it does not appear to be a significant
drawback.

Additionally, loops in the Isabelle/HOL SCF syntax do rely on a explicit exit condition. This
condition is simply the precondition of the entry block of the loop as generated using the
methodology in Section 6.1.3.

Another important difference is that basic blocks in Isabelle take the form Block n a i, where n
indicates the number of instructions in the block, a is the address of the last instruction in
the block, and i is an ID that uniquely identifies the block in the current SCF. This style is
used to assist with the symbolic execution methodology described in Section 6.2.2.

Finally, to properly handle function calls in the Isabelle/HOL syntax, the analyzed CFGs are
preprocessed prior to performing extraction in order to isolate call instructions into their
own basic blocks. These single-instruction blocks are then translated into Call f entries in
the Isabelle/HOL SCF, where f is the textual label of the function called. This allows for
proper matching with the Hoare rules presented below.

6.2.2 Symbolic Execution for Verification

Section 5.2.1 previously presented a formal symbolic execution engine based on the machine
model described in Section 4.1. It provides a function runUntil that describes the
symbolic execution of blocks in a control flow graph.

The formal function for block-level symbolic execution presented in this chapter, by contrast,
is a transition relation formulated as

symbExec : N×W × N× S × S → B.

Its inputs are the number of instructions left to execute in the block, the address of the last
instruction in the block, the block’s ID, the current state σ, and an ending state σ′. Its result
is true if and only if execution starting from the current instruction in state σ and running to
the ending address can produce state σ′. The other arguments are used to ensure termination

66 Chapter 6. Syntax-Driven Verification

and block matching. Undefined behavior, such as null-pointer dereferencing, is modeled by
relating the state in which it occurs to any successor state supplied with it.

The internal step function has type step : A×N× S → S, with its first argument being an
instruction, its second being the size of the instruction, and its third being the current state.
The function returns the state after instruction execution, incrementing rip by the supplied
size if it was not changed by a control-flow instruction instead.

The symbExec function is used internally by another transition relation, this one for
the symbolic execution of entire SCFs: execScf : SCF × S × S → B. That function
recurses through an SCF and checks symbExec on every block it finds, performing the
necessary state transformations to deal with the semantics of the individual SCF components
encountered. Any loops encountered are dealt with using an LFP construction. This means
that, if there are any infinite loops present, the function will have no related successor
states. The only matching state would be ⊥NT. Strictly speaking, execScf is not actually
executed when used in FMUC proofs; it exists to allow proving the correctness of the Hoare
rules shown below in Section 6.2.4.

Unlike the symbolic execution for generation, this symbolic execution methodology is im-
plemented fully in Isabelle/HOL, meaning that every rewrite rule has been formally proven
correct.

6.2.3 Per-Block Verification

The verification methodology presented here occurs by first verifying the functionality of each
basic block in the corresponding function. This is done for each block by proving the lemma
shown below, using the execScf function from the previous section. To do this, however,
a formal notion of memory preservation with respect to state changes is required.

Definition 6.5 (Memory preservation with respect to state changes). The set of memory
regions M ′ characterizes memory preservation with respect to the change from some state σ
to some other state σ′ if and only if every byte outside of the regions in M ′ is the same in
both states. The addresses of those bytes are represented by the variable a.

This is formally expressed as:

preserve(M ′, σ, σ′) ≡ ∀a · (∀r ∈M ′ · [a, 1] ./ r) −→ σ : ∗[a, 1] = σ′ : ∗[a, 1]. (6.8)

Using Definition 6.5, each block gets a lemma of the form

P (σ) −→ symbExec(n, a, i, σ, σ′) ∧Q(σ′) ∧ preserve(M(σ), σ, σ′). (6.9)

Note that M is a state-dependent function. Every generated version of Eq. (6.9) is discharged
with an Isabelle/HOL proof method written in Eisbach [83], Isabelle’s proof automation
language. For each block, the method takes the block-related proof ingredients from the
FMUC and runs symbolic execution to prove the postcondition and thus establish memory
preservation for the block. The open variables P , Q, n, a, i, and M are all provided by

6.2. FMUC Verification 67

the FMUC. No user interaction is required outside of cases where semantics for specific
instructions are unavailable or the Isabelle libraries in use do not have the right simplification
lemmas for automatic reasoning. Those cases are rare and become rarer as more relevant
lemmas are developed, so for basic blocks, the proof is essentially automated.

6.2.4 Function Body Verification

While symbolic execution works well to establish memory preservation on the level of basic
blocks, the goal of this verification effort is to formally establish memory preservation on
the function level. This section describes that process, which occurs after the individual
blocks have had their semantics and memory preservation derived and relies on Hoare logic
(described in Section 3.1.2).

Hoare Rules

The Hoare triple formulation used for this work, {P}f{Q;M}, resembles traditional Hoare
triples a bit more than the version from Chapter 5, as rather than a halting condition it takes
a syntactic representation of the program, an SCF. Unlike traditional Hoare triples, however,
it also explicitly contains the set of memory regions, M , that contain the areas of memory
read and written by the program the SCF encodes. Syntactic structure is required because
Hoare logic is a syntax-guided approach.

Definition 6.6 (Hoare triple for SCF).

{P}f{Q;M} ≡ ∀σ σ′ · P (σ) ∧ execScf(f, σ, σ′) −→ Q(σ′) ∧ preserve(M,σ, σ′) (6.10)

The above definition states the following: if precondition P holds on the initial state σ
and σ′ would be the result of symbolically executing the SCF f , postcondition Q will hold
on the produced state and any values stored in the regions of memory outside set M remain
unchanged.

While Definition 6.6 focuses on the regions written to, the regions read must also be included
as symbolic execution relies on those regions being included. Without them, proofs that
require symbolically executing the related instructions will not complete.

The Introduction Rule

This rule, depicted in Fig. 6.5a, is the rule that ties the per-block verification to the function-
body verification. The first assumption requires the symbolic execution method be run from
a universally quantified initial symbolic state σ that satisfies the precondition. As long as
any resulting state σ′ satisfies the postcondition Q, the set of memory regions M generated
for the block should be correct.

68 Chapter 6. Syntax-Driven Verification

∀σ σ′ · P (σ) −→
symbExec(n, a, i, σ, σ′) ∧
Q(σ′) ∧ preserve(M(σ), σ, σ′)

M ′ = {r | ∃σ · P (σ) ∧ r ∈M(σ)}

{P}Block n a i{Q;M ′}
(a) Introduction rule

{P}f{Q;M1} {Q}g{R;M2} M = M1 ∪M2

{P}f ; g{R;M}
(b) Sequence rule

{P ∧B}f{Q1;M1} {P ∧ ¬B}g{Q2;M2} Q1 ∨Q2 −→ Q M = M1 ∪M2

{P}If B Then f Else g Fi{Q;M}
(c) Conditional rule

{I ∧B}f{I ′;M} I ′ −→ I I ∧ ¬b −→ Q

{I}While B DO f OD{Q;M}
(d) While rule

M = ∅ P −→ Q

{P}Skip{Q;M}
(e) Skip rule

∀0 ≤ j ≤ n · {P}aj{Qj;Mj} (∨
0≤j≤n Qj) −→ Q M = ⋃

0≤j≤n Mj

{P}Resume{(i0, a0), . . . , (in, an)}{Q;M}
(f) Resume rule

P −→ P ′ {P ′}b{Q}M
{P}b{Q}M

(g) Precondition weakening

Q′ −→ Q {P}b{Q′;M}
{P}b{Q;M}

(h) Postcondition strengthening

Figure 6.5: Hoare rules for memory preservation

6.2. FMUC Verification 69

The second assumption is required because of an important subtlety: the regions generated
in the FMUC are state dependent. As previously stated, the M for a block is actually a
function based on the block’s initial state: its regions depend on the values stored in memory.
However, it makes no sense to express the regions used by individual blocks within a larger
function in terms of their own individual initial state alone. It would be unsound for regions
that depend on values calculated in the middle of the function to be expressed solely in
terms of the initial state. As such, the Hoare triples are defined over a state-independent
set of memory regions, M ′. That set is obtained for each block by taking the generated
state-dependent set of memory regions and applying that set to any state that satisfies the
current invariant.

The Other Rules

While the introduction rule for basic blocks is the ultimate target of our Hoare rule application
process, the rest of the rules are required to decompose the syntax above the level of blocks.
The remainder of Fig. 6.5 describes those additional rules. The Sequence, Conditional, and
Resume rules are straightforward: their ultimate memory region sets are the unions of the
region sets of their constituents. Note that the sequence rule is sound only because the
memory predicates are independent of state as discussed in Section 6.2.3.

The while rule is based on a loop invariant, I. If the memory preservation of one iteration of
loop body f is constrained to set of memory regions M , then so is the memory preservation
of every other iteration. This may sound counterintuitive, so consider a simple C-like loop
that starts from i = 0 and iterates while i < 10. The body of this example loop contains
single-byte array assignment operations along the lines of a[i] = v. Verification of the loop
requires the loop invariant I(σ) = i(σ) < 10. The FMUC of the loop body will have, as a
state-dependent set of memory regions, M(σ) = {[a+ i(σ), 1]}, which is a single region of
one byte. If the Hoare logic introduction rule were to be applied to the block that is the
body of the loop, the result would be as follows:

M ′ = {r | ∃σ · I(σ) ∧ r ∈M(σ)} (6.11a)
= {r | ∃σ · i(σ) < 10 ∧ r = [a+ i(σ), 1]} (6.11b)
= {[a′, 1] | a ≤ a′ ≤ a+ 10} (6.11c)

The set M ′ contains the regions of memory used by the entire loop, not just one iteration.
This is because the introduction rule applies the state-dependent set of memory regions to
any state that satisfies the invariant. Thus, the strength of the generated invariants directly
influences the tightness of the overapproximation of memory preservation and of memory
usage as a whole. A weaker invariant, such as i < 20, would result in a larger set of memory
regions by relaxing the constraints on symbolic addresses and, for other situations, symbolic
region sizes.

70 Chapter 6. Syntax-Driven Verification

Listing 6.1: VCG step method
1 method vcg_step =
2 ((rule htriples)+, rule blocks)+,
3 (simp add: pred_logic Ps Qs)?,
4 (((auto simp: eq_def)[])+)?

Listing 6.2: Main VCG method
1 method vcg uses scf =
2 subst scf ,
3 vcg_step+

Verification Condition Generation

The VCG presented here is a set of Eisbach proof methods, the entry point of which is shown
in Listing 6.2. It is designed to automatically apply the proper Hoare logic rules as much as
possible via the vcg_step method in Listing 6.1, driven by the formal SCF provided by the
FMUC.

Internally, vcg_step repeatedly applies one of the Hoare rules from Fig. 6.5 (excluding the
While, strengthening, and weakening rules) to the current state of the SCF until no more
rules can be applied. At that point, it assumes that the introduction rule has been applied,
resulting in a block goal being generated, and attempts to discharge that goal using one
of the lemmas generated for Section 6.2.3. This process is repeated until no more of the
restricted set of rules can be applied or the last rule application resulted in a non-block goal.
At that point, Line 3 cleans up any preconditions and postconditions in the current goal.
The last step, Line 4, then tries to eliminate as many goals as it can, one at a time, with
Isabelle’s basic auto method. If there are no loops present in the SCF under consideration,
this method will complete the proof without any need for user interaction.

In the case where loops are present, the VCG provides an alternate vcg_while method,
shown in Listing 6.4 that relies on the loop rule presented in Fig. 6.5d. That loop rule is
structured such that the majority of work required to support the loops is identifying the

Listing 6.3: Alternate step method for Resume clauses
1 method vcg_step ’ =
2 (rule htriples)+,
3 simp ,
4 ((rule htriples)+, rule blocks)+,
5 (simp add: pred_logic Ps Qs)?,
6 (((auto simp: eq_def)[])+)?

6.2. FMUC Verification 71

Listing 6.4: VCG method for loops
1 method vcg_while for P :: state_pred =
2 ((rule htriples)+)?,
3 rule HTriple_weaken[where P=P],
4 simp add: pred_logic Ps Qs,
5 rule HTriple_while ,
6 vcg_step+,
7 (simp add: pred_logic Ps Qs)+,
8 (
9 (vcg_step ’ | vcg_step)+,

10 (simp+)?
11)?

preconditions of their exit blocks and then supplying their disjunction to vcg_while. This
method relies on application of the weakening rule presented in Fig. 6.5g on Line 3 to show
that the postcondition of the block before entry implies the loop invariant.

The method vcg_step’, used within vcg_while, is provided for those cases where a loop
has multiple exit points. A Resume statement will be present in such cases, and the process
of rule application and simplification must occur in a slightly different order. On occasion,
there will also be a loop that has a single exit point but gets a Resume statement anyway
due to how the control flow extraction algorithm is set up. The process of dealing with such
statements is roughly the same, however.

After application of vcg_while, nested loops and those with multiple exit points may require
additional applications of condition simplifying or plain simp usage around further applications
of vcg_step. Nothing beyond that should be necessary.

Without exception, each of the proofs we produced could be finished using standard, off-the-
shelf Isabelle/HOL methods, though finishing them was not always an automatic process.
The part that is usually the most involved, defining the invariants (as seen in the previous
chapter) is taken care of by the FMUC generation. This leaves dealing with loops, particularly
ones with multiple exit points, as the biggest challenge for most situations.

6.2.5 Composition

In order to achieve a scalable verification methodology, it must support some form of
compositionality.

Consider the body of an already-verified function f with the following Hoare triple:

{Pf}f{Qf ;Mf}.

In order to reuse that function’s proof in a compositional fashion, it is treated as a black box.
Now consider the assembly of a function g that calls f :

72 Chapter 6. Syntax-Driven Verification

{Pf}f{Qf ;Mf} P −→ Pf ∧ Psep ∀s s′ · (preserve(Mf , s, s
′) ∧

Psep(s)) −→ Psep(s′) Qf ∧ Psep −→ Q

{P}Callf{Q;Mf}

Figure 6.6: Frame rule for composition of memory usage

a0: push rbp
a1: call f
a2: pop rbp
a3: ret

P and Q are the pre- and postconditions just before executing call and just after it returns.
P contains the equality ∗[rspg

0 − 8, 8] = rbpg
0, expressing that g has pushed the frame pointer

rbp into its own local stack frame. The ultimate postcondition of g expresses that the callee-
saved register rbp is properly restored: rbp = rbpg

0. That operation is indeed performed
by pop rbp. In order to prove proper restoration of rbp, a proof that function f did not
overwrite any byte in the region [rspg

0 − 8, 8] is required. The proof must also show that f
does not overwrite region [rspg

0, 8], which stores the address g returns to. That proof would
be specific to this particular instance of calling f .

Of course, g may not be the only function that calls f . It may even be called multiple times
by the same function. Every call has specific requirements on which memory regions must be
preserved, based on the calling context. Thus, to be able to verify function f once but reuse
its proof for each call, the proof must at least contain an overapproximation of the memory
written to by function f . This is exactly what separation logic [75, 94, 104] requires. As
described in Section 1.1.2, separation logic provides a frame rule for compositional reasoning.
Informally, this rule states that, if a program can be confined to a certain part of state,
properties of that program will carry over when the program is used as part of a bigger
system.

In order to achieve that same behavior specifically for memory preservation verification,
we developed the frame rule presented in Fig. 6.6. This rule is used to prove that the
memory usage of a caller function g is equal to the memory it itself uses, plus the memory
used by function f . It must have the following four assumptions. First, that f has been
verified for memory preservation, with Mf denoting the memory regions f uses. Second, that
precondition P can be split up into two parts: precondition Pf , required to verify f , and a
separate part Psep. The separate part is specific to the specific call of the function where the
frame rule is applied. In the example above, Psep must contain the equality [rspg

0−8, 8] = rbpg
0.

Third, the correctness of Mf , the set of memory regions, should suffice to prove that Psep is
preserved. This effectively means that, for the above example, Mf should not overlap with
the two regions of g. Fourth and finally, Psep and Qf should imply postcondition Q.

In practice, many functions will not be part of the assembly code under verification, such as
dynamic library or system calls. Those cases necessitate generating the assumptions required

6.3. Full Example 73

to proceed with verification. The following box notation supports those cases:

{P} f {Q;Mf} ≡ ∃Pf Qf Psep · all four assumptions of the frame rule are satisfied. (6.12)

This assumption informally expresses that function f has been verified. Its memory usage Mf

is assumed to suffice to prove that the states that satisfy precondition P lead to the states
that satisfy postcondition Q.

6.3 Full Example

This section presents an execution of the entire toolchain on the example given in Fig. 6.7a as
a summary of Sections 6.1 and 6.2. The C code is provided solely for presentation, as the only
inputs to the FMUC generation are the assembly created by disassembling the corresponding
binary and a basic configuration file indicating which functions to analyze. Figure 6.7b
presents the generated SCF. The example has one loop, which starts at instruction address
0x120. Zooming in on Block 123e->1244, we see from Fig. 6.7d that the FMUC provides 13
regions, of which four are shown. Region r0 stores the return address while region r1 depends
on the segment register fs and stores the canary value used to detect stack buffer overflows
[35]. Region r2 is based on the pointer passed as the second argument to the function, and
region r3 is part of the stack frame. The generated MRRs assume that all these regions are
separate.

The precondition assigned to Block 123e->1244 is effectively a loop invariant (see Fig. 6.7d).
The frame pointer rbp is equal to the original stack pointer minus eight. Register rdi has
not been touched. Some of the more complex assignments are also shown, such as the current
value of the stack pointer. In total, the loop invariant provides information on 11 registers
and 12 memory locations for this basic block. The process of verification shows that, for any
state satisfying this invariant, executing one iteration of the loop body will result in a state
that again satisfies the loop invariant. The only interactions required in verifying the FMUC
of the entire function are: 1. showing that the postcondition after Block 1149->120b implies
the loop invariant, and 2. showing that, in the case of a break, the postcondition of the loop
body implies the precondition of Block 1246->1249. This amounts to two manually written
lines of Isabelle proof code.

To demonstrate the black-box functionality from Section 6.2.5, is_even was treated as
external to the example’s analysis. This resulted in the generation of an assumption stating
that the memory usage of is_even suffices to show that the invariant for the call site
(instruction address 124b) implies the invariant for the instruction address immediately
following, 1250. This means thatMis_even is assumed to not overlap with regions a through d,
among other things.

Figure 6.7f shows the sole manual effort required to prove the FMUC for this function. All
it involves is calling the proper predefined Eisbach proof methods, previously described in
Section 6.2.4. The first proof method applied is vcg, which initializes the proof with the
function’s SCF, applies Hoare rules, and proves correctness of all memory preservation up

74 Chapter 6. Syntax-Driven Verification

1 int main(int argc , char* argv [])
{

2 int* a = (int*)argv;
3 int* b = (int*)(argv + 4);
4 *(int*)(argv + 2) = *a + *b;
5 *(char*)argv = ’a’;
6

7 int array[argc];
8 for (int i = 0; i < argc; i

++)
9 array[i] = argv[i][0] *

2;
10

11 if (is_even(argc))
12 return array[argc];
13 return array [0];
14 }

(a) C code

Block 1149->120b;
Loop
Block 123e->1244;
If SF 6= OF Then Block 120d->123a
Else Break Fi

Pool;
Block 1246->1249;
Block 124b->124b;
Block 1250->1252;
If ZF Then Block 1263->1267
Else Block 1254->1261 Fi;

Block 1269->1279;
If ZF Then Block 1280->1285
Else Block 127b->127b Fi

(b) Syntactic control flow for the assembly

M = {r0 = [rsp0, 8], r1 = [fs0 + 40, 8], r2 = [rsi0 + 36, 4], r3 = [rsp0 − 8, 8], . . . }
MRR = {r0, r1, r2, r3, . . . , r12} are separate

(c) Some memory regions and their relations for block 123e->1244

P123e(σ) =

rip = 0x123e
rbp = rsp0 − 8
rdi = rdi0

rsp = rsp0 − (88 + 16 ∗ ((15 + 4 ∗ sextend(〈31, 0〉rdi0)/16))
∗[rsp0 − 40, 8] = rsp0 − (85 + 16 ∗ ((15 + 4 ∗ sextend(〈31, 0〉rdi0))/16))� 2� 2
∗[rsp0 − 48, 8] = sextend(〈31, 0〉rdi0)− 1
∗[rsp0 − 56, 8] = rsi0 + 32

(d) Invariant for address 0x123e (only 7 out of 23 equalities shown)

{P124b} is_even {P1250;Mis_even}

(e) Assumption due to call of is_even

1 apply (vcg scf: main_scf)
2 apply (vcg_while ‹P123e || P1246›)
3 apply vcg_step+

(f) Isabelle proof code (manual effort)

Figure 6.7: Application of entire methodology on example

6.4. Application: Xen Project 75

until the loop. Following that, the proof method for dealing with loops, vcg_while, is applied
with the invariant formed from the disjunction of the precondition of the loop’s entry block
and the precondition of the loop’s exit block, both manually identified from the generated
SCF. As the last manual step, vcg_step is called repeatedly to verify the remainder of the
function.

Finally, note that, without any assumptions, the function could overwrite its own return
address at various places. The MRRs are strong enough to exclude this scenario. Those
relations thus form the preconditions under which a return-address exploit is impossible. For
example, they assume that regions a and c are separate. This means that the address stored
in argument argv (mapped to rsi0 on the assembly level) is not allowed to point to a region
within the stack frame of the main function.

6.4 Application: Xen Project

The Xen Project [29] is a mature, widely-used virtual machine monitor, also known as a
hypervisor. Hypervisors provide a method of managing multiple VMs (called domains in the
Xen documentation) on a physical host.

The Xen hypervisor is a suitable case study because of its security relevance and its complex
build process involving real production code. Security is a significant issue in environments
where hypervisors are used, such as the Amazon Elastic Compute Cloud, Rackspace Cloud,
and many other cloud service providers. For example, when one or more hosts support guest
domains for any number of distinct users, ensuring isolation of the domains is important.

The Xen build process produces multiple binaries that contain functions not present in the
Xen source itself. This is due to the inclusion of external static libraries and programs. Xen
version 4.12 was compiled with GCC 8.2 via the standard Xen build process. This build
process uses various optimization levels, ranging from O1 to O3. The version of objdump used
to disassemble the compiled binaries was 2.31.1.

The verification effort presented here covered three of the binaries produced by the Xen build
process: xenstore, xen-cpuid, and qemu-img-xen. The xenstore binary is involved in the
functionality of XenStore4, a hierarchical data structure shared amongst all Xen domains.
This sharing allows for the possibility of inter-domain communication, though in general
XenStore is intended for simple configuration information. A smaller program than xenstore,
xen-cpuid provides functionality similar to that of the cpuid utility5. This utility queries
the underlying processors and displays information about the features they support. Such
functionality is important for Xen as it supports migrating domains between processors with
different variants of the same ISA [125]. The third binary used, qemu-img-xen, consists of
over three hundred functions that are not present in the Xen source code. It provides some
of the functionality of Quick Emulator (QEMU). QEMU is a free, open-source emulator6.

4https://wiki.xen.org/wiki/XenStore
5https://linux.die.net/man/1/cpuid
6https://www.qemu.org/

https://wiki.xen.org/wiki/XenStore
https://linux.die.net/man/1/cpuid
https://www.qemu.org/

76 Chapter 6. Syntax-Driven Verification

Binaries Function Count Instruction Count Loops Manual Lines of Proof

xenstore 2/6 100 0 6
xen-cpuid 2/3 210 2 39
qemu-img-xen 247/343 11 942 64 1002
Total 251/352 12 252 65 1047

Table 6.1: Verified Xen Functions

Verified Indirection Address
Computation

repz cmps Recursion SCF explosion

0

100

200

300
71.31%

18.75%

5.4% 2.84% 0.57% 1.14%

Fu
nc
tio

n
C
ou

nt

Figure 6.8: Analyzed Xen functions compared to unverified features

Xen uses it to emulate device models, which provide interfaces for hardware storage.

This methodology is currently capable of dealing with 71 % of the functions present in the
aforementioned binaries (see Fig. 6.8). The supported features include (nested) loops, subcalls,
variable argument lists, jumps into other function bodies, string instructions with the rep
prefix, and SIMD instructions. There is no particular limit on function size. The average
number of instructions per function analyzed is 49. Some of the functions analyzed have over
300 instructions and over 100 basic blocks.

There are five categories of features not currently supported. The first and most common,
previously mentioned in Section 6.1.1, is indirection, accounting for 19 %. Indirection involves
a call or jump instruction that loads the target address from a register or memory location
rather than using a static value. Switch statements and certain uses of goto are the most
common causes of indirect jumps. Indirect calls generally result from usage of function
pointers. For example, the main functions of all three verified binaries used switch statements
in loops in the process of parsing command line options. These statements introduced indirect
branches.

The second category involves issues related to generating the MRRs. This step requires
solving linear arithmetic over symbolically computed addresses. Sometimes, addresses are

6.5. Summary 77

computed using a combination of arithmetic operators with bitwise logical operators. In
some of these cases, our translation to Z3 does not produce an answer. As an example,
function qcow_open uses the rotate-left function to compute an address. As another example,
function AES_set_encrypt_key produces addresses that are obtained via combinations of
bit-shifting, bit masking, and xor-ing. For these cases, separation and enclosure relations
cannot be generated.

The instruction repz cmps is currently not supported for technical reasons. It is the assembly
equivalent of the function strncmp, but instead writes its result to a flag. Various other
string-related instructions with the rep prefix are supported, however.

Functions with recursion, a minority in systems code, are also not supported as they are
not well-suited to automation in this framework. The two recursive functions encountered
in the analyzed Xen binaries both perform file-system-like tasks. Functions do_chmod and
do_ls are similar to the permission-setting chmod utility and the directory-displaying ls,
respectively.

The final category is functions whose SCF explodes. The issue can occur when the pattern
in Fig. 6.3 shows up extensively or when while loops have multiple entry points.

Table 6.1 provides an overview of the verification effort. The table shows the absolute counts
of functions verified as well as the total number of instructions for those functions. Alongside
that information is the number of functions with loops that were verified and how many
manual lines of proof were required in total. The vast majority of those manual proof lines
were related to the loop count. Meanwhile, a comparison with those functions not verified
can be found in Fig. 6.8.

6.5 Summary

This chapter presented an approach to formal verification of memory preservation for functions
in a disassembled program. As in the previous chapter, the memory usage reported for those
functions is an overapproximation of the memory that would be used when actually executing
the assembly code. The approach automatically generates an FMUC that includes 1. a set of
memory regions read from and written to, 2. preconditions necessary for formal verification,
3. postconditions that express sanity constraints over the function (the return address has
not been overwritten, callee-saved registers are restored, etc.), and 4. proof ingredients. The
certificate is loaded into a theorem prover, where it can be verified. The proof ingredients,
combined with custom proof methods, provide a large degree of automation. They deal with
memory aliasing and provide both the control flow of the function as well as invariants.

The approach was applied to three binaries produced by the Xen hypervisor build process.
They contain nested loops, complex data structures, variadic functions, and both internal and
external function calls. A certificate could be generated and verified for 71 % of the functions
from those binaries. The amount of user interaction was roughly 85 lines of proof code per
1000 lines of assembly code. The greatest issue was indirect branching, which could be found
in 19 %of the functions examined.

78 Chapter 6. Syntax-Driven Verification

Chapter 7

Conclusions

Certain properties, such as memory preservation, can only be proven on the assembly
level. This is due to memory preservation requiring a concrete representation of memory.
Unfortunately, assembly-level verification is a fundamentally harder problem than source-level
verification due to the low level of abstraction. However, it can also produce highly reliable
claims over software. By eliminating the need to trust the compiler and the semantics of
whatever source language the program was written in, you can drastically decrease the TCB
in use.

Additionally, the property of memory preservation cannot be determined automatically under
all circumstances. It is an undecidable property. Because of this and the overheads that ITP
can have, we designed semi-automated methodologies for that purpose. Those methodologies
are briefly revisited below.

7.1 Contributions Revisited

This dissertation presented two methods for proving memory preservation, control-flow-driven
verification and syntax-driven verification. Both approaches rely on the same symbolic
execution model and memory-related rewrite rules documented in Chapter 4, but differ in
several major aspects.

Technically they also both use Hoare triples, but only Chapter 6 uses proper Hoare rules.
Chapter 5 uses a modified style that takes a halting condition H instead of a syntactic
construct in the middle.

7.1.1 Control-Flow-Driven Verification

This methodology uses a Floyd-style approach [51] with automatically-selected cutpoints. It
is very similar to the work of Matthews et al. [85], but with a focus on memory preservation
specifically. The rewrite rules over memory accesses from Section 4.2.2 result in additional

79

80 Chapter 7. Conclusions

VCs that would not be present in their framework. Those VCs require time-consuming word
arithmetic when the appropriate preconditions/assumptions are not present. The precon-
ditions/assumptions simply establish separation and enclosure relations for the necessary
memory regions.

This methodology was applied to 63 functions extracted from the HermitCore unikernel library,
plus 12 optimized versions, resulting in more than 2379 assembly instructions verified.

7.1.2 Syntax-Driven Verification

Rather than using a more general CFG to guide the verification, a more structured SCF is
extracted from the assembly under test. This SCF is used as one of the generated FMUC’s
proof ingredients. The other proof ingredients are the generated memory regions, MRRs, and
block conditions. With the invariant generation as it currently is, the only user interaction
required under normal circumstances is weakening the condition for a loop entry block by
merging it with the condition for all of the loop’s exit blocks.

This methodology was applied to 251 functions from the Xen Project binaries examined,
71 % of the total functions from the examined binaries. Ultimately, 12 252 instructions were
covered with only 1047 manual lines of proof required.

7.2 Proposed Post-Preliminary Exam Work

As a formal property, memory preservation has been proven to never miss any memory
regions written to, assuming the correctness of the semantics and model it is applied to [15,
127]. Put another way, however, this means that the methodology must be conservative. If
it cannot make a determination about the usage status of some region of memory, it must
assume that that region is used. It must overapproximate. It does not matter if the cause
was an underdeveloped state or too large of one to easily reason about.

There are two potential ways to reduce that overapproximation detailed below.

7.2.1 Strengthen Invariants

In order to enhance automation, we currently generate very weak invariants. While this
works reasonably well, being able to generate stronger invariants would be advantageous.
Stronger invariants mean stricter memory preservation proofs.

One possible way to generate stronger invariants would be to use abstract interpretation
[33, 34]. The methodology used by Crab (https://github.com/seahorn/crab) for loop
invariant restriction may prove useful for this purpose [56].

Abstract interpretation is a form of approximation in which the possible values for some
variables in a program are constrained to, for example, a polyhedral range. It functions

https://github.com/seahorn/crab

7.2. Proposed Post-Preliminary Exam Work 81

somewhat like a partial execution of the program under test in order to determine semantic
information. It is sound and complete, meaning there would be no drawbacks to using it
aside from perhaps additional execution time.

7.2.2 Model a More Realistic Memory Model

Most applications do not run in isolation. Their behavior is limited by the kernel of whatever
OS is in use, and that includes limits on the amount of memory they are allowed to use.

In particular, process and thread stacks are limited by how they are laid out in (virtual)
memory, and on top of that most modern OS kernels put limits on stack size as sanity checks.
The kernel limits are generally configurable, both at compile time as well as at runtime, but
can require privileged access. Properly modeling those restrictions would potentially require
formulating a more in-depth memory model as the stack limits that are changed at runtime
come in two forms. There is a soft limit on stack size that unprivileged users can modify, but
there is also a hard limit that requires root access to modify.

Additional features that would be desirable would be the ability to treat memory as allocated
and deallocated. On modern systems, this is usually handled on the page level, meaning via
virtual memory management. Modeling virtual memory would likely not be a good idea, as
we are currently focusing on userspace analysis.

The main restriction that would be interesting to model, however, would be the restriction of
addresses to their lower 48 bits for actual addressing, with the remaining 16 bits being equal
in value to the 48th bit.

82 Chapter 7. Conclusions

Bibliography

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. “Control-Flow Integrity:
Principles, Implementations, and Applications”. In: ACM Transactions on Information
and System Security 13.1 (Oct. 2009), 4:1–4:40. issn: 1094-9224. doi: 10.1145/
1609956.1609960.

[2] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E.
Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christopher
Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell. “ISA Semantics for
ARMv8-A, RISC-V, and CHERI-MIPS”. In: Proceedings of the ACM on Programming
Languages 3.POPL (Jan. 2019), 71:1–71:31. issn: 2475-1421. doi: 10.1145/3290384.

[3] Clark Barrett and Sergey Berezin. “CVC Lite: A New Implementation of the Coop-
erating Validity Checker”. In: Computer Aided Verification. Proceedings of the 16th
International Conference. (Boston, MA, USA, July 13–17, 2004). Ed. by Rajeev Alur
and Doron A. Peled. Lecture Notes in Computer Science 3114. Berlin Heidelberg:
Springer-Verlag, 2004, pp. 515–518. doi: 10.1007/978-3-540-27813-9_49.

[4] Clark Barrett and Cesare Tinelli. “CVC3”. In: Computer Aided Verification. Proceed-
ings of the 19th International Conference. (Berlin, Germany, July 3–7, 2007). Ed. by
Werner Damm and Holger Hermanns. Lecture Notes in Computer Science 4590. Berlin
Heidelberg: Springer-Verlag, 2007, pp. 298–302.

[5] Christoph Baumann, Mats Näslund, Christian Gehrmann, Oliver Schwarz, and Hans
Thorsen. “A High Assurance Virtualization Platform for ARMv8”. In: 2016 European
Conference on Networks and Communications. (Athens, Greece, June 27–30, 2016).
Piscataway, NJ, US: IEEE, Sept. 8, 2016, pp. 210–214. doi: 10.1109/EuCNC.2016.
7561034.

[6] Daniel J. Bernstein. “The Poly1305-AES Message-Authentication Code”. In: Fast
Software Encryption. 12th International Workshop Revised Selected Papers. (Paris,
France, Feb. 21–23, 2005). Ed. by Henri Gilbert and Helena Handschuh. Lecture Notes
in Computer Science 3557. Berlin Heidelberg: Springer-Verlag, 2005, pp. 32–49. isbn:
978-3-540-31669-5.

[7] Yves Bertot and Pierre Castéran. “* Proof by Reflection”. In: Interactive Theorem
Proving and Program Development. Coq’Art: The Calculus of Inductive Constructions.
Ed. by Wilfried Brauer, Grzegorz Rozenberg, and Arto Salomaa. Texts in Theoretical

83

https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/3290384
https://doi.org/10.1007/978-3-540-27813-9_49
https://doi.org/10.1109/EuCNC.2016.7561034
https://doi.org/10.1109/EuCNC.2016.7561034

84 Bibliography

Computer Science. Berlin Heidelberg: Springer-Verlag, 2004, pp. 433–448. isbn:
978-3-662-07964-5. doi: 10.1007/978-3-662-07964-5_16.

[8] William R. Bevier. “A Verified Operating System Kernel”. PhD thesis. Oct. 1987.
[9] William R. Bevier. “Kit and the Short Stack”. In: Journal of Automated Reasoning

5.4 (Dec. 1989), pp. 519–530. issn: 1573-0670. doi: doi.org/10.1007/BF00243135.
[10] William R. Bevier. “Kit: A Study in Operating System Verification”. In: IEEE

Transactions on Software Engineering 15.11 (Nov. 1989), pp. 1382–1396. issn: 0098-
5589. doi: 10.1109/32.41331.

[11] William R. Bevier, Warren A. Hunt Jr., J Strother Moore, and William D. Young. “An
Approach to Systems Verification”. In: Journal of Automated Reasoning 5.4 (Dec. 1,
1989), pp. 411–428. issn: 1573-0670. doi: 10.1007/BF00243131.

[12] BitBlaze: Binary Analysis for Computer Security. July 16, 2013. url: http://
bitblaze.cs.berkeley.edu/ (visited on 08/22/2019).

[13] Sandrine Blazy and Xavier Leroy. “Mechanized Semantics for the Clight Subset of the
C Language”. In: Journal of Automated Reasoning 43.3 (Oct. 1, 2009), pp. 263–288.
issn: 1573-0670. doi: 10.1007/s10817-009-9148-3.

[14] Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam. “Power Struggles:
Revisiting the RISC vs. CISC Debate on Contemporary ARM and x86 Architectures”.
In: High Performance Computer Architecture. IEEE 19th International Symposium.
(Shenzhen, China, Feb. 23–27, 2013). Piscataway, NJ, US: IEEE, June 3, 2013, pp. 1–12.
doi: 10.1109/HPCA.2013.6522302.

[15] Joshua A. Bockenek, Freek Verbeek, Peter Lammich, and Binoy Ravindran. “For-
mal Verification of Memory Preservation of x86-64 Binaries”. In: Computer Safety,
Reliability and Security. Proceedings of the 38th International Conference. (Turku,
Finland, Sept. 11–13, 2019). Ed. by Alexander Romanovsky, Elena Troubitsyna, and
Friedemann Bitsch. Vol. 11698. Lecture Notes in Computer Science. Berlin Heidelberg:
Springer-Verlag.

[16] Joshua A. Bockenek, Freek Verbeek, Peter Lammich, and Binoy Ravindran. Formal
Verification of Memory Preservation of x86-64 Binaries. SAFECOMP 2019 supple-
mental material. Version 4. July 24, 2019. doi: 10.6084/m9.figshare.7356110.v4.

[17] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino, Jacob R. Lorch,
Bryan Parno, Ashay Rane, Srinath Setty, and Laure Thompson. “Vale: Verifying High-
Performance Cryptographic Assembly Code”. In: 26th USENIX Security Symposium.
(Vancouver, BC, Canada). USENIX Association, Aug. 2017, pp. 917–934. isbn: 978-
1-931971-40-9. url: https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/bond.

[18] Jonathan Bowen. “Standard Microprocessor Programming Cards”. In: Microprocessors
and Microsystems 9.6 (July–Aug. 1985), pp. 274–289. doi: 10.1016/0141-9331(85)
90116-4.

https://doi.org/10.1007/978-3-662-07964-5_16
https://doi.org/doi.org/10.1007/BF00243135
https://doi.org/10.1109/32.41331
https://doi.org/10.1007/BF00243131
http://bitblaze.cs.berkeley.edu/
http://bitblaze.cs.berkeley.edu/
https://doi.org/10.1007/s10817-009-9148-3
https://doi.org/10.1109/HPCA.2013.6522302
https://doi.org/10.6084/m9.figshare.7356110.v4
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://doi.org/10.1016/0141-9331(85)90116-4
https://doi.org/10.1016/0141-9331(85)90116-4

Bibliography 85

[19] Robert S. Boyer and J Strother Moore. A Computational Logic. New York, NY, USA:
Academic Press, Inc., 1979. isbn: 978-0-12-122950-4. doi: 10.1016/C2013-0-10411-
4.

[20] Robert S. Boyer and Yuan Yu. “Automated Proofs of Object Code for a Widely Used
Microprocessor”. In: Journal of the ACM 43.1 (Jan. 1996). Ed. by Frank Thomson
Leighton, pp. 166–192. doi: 10.1145/227595.227603.

[21] Jörg Brauer, Bastian Schlich, Thomas Reinbacher, and Stefan Kowalewski. “Stack
Bounds Analysis for Microcontroller Assembly Code”. In: Embedded Systems Security.
Proceedings of the 4th Workshop. (Grenoble, France, Oct. 15, 2009). New York,
NY, USA: ACM, 2009, 5:1–5:9. isbn: 978-1-60558-700-4. doi: 10.1145/1631716.
1631721.

[22] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. “BAP:
A Binary Analysis Platform”. In: Computer Aided Verification. Proceedings of the
23rd International Conference. (Snowbird, UT, USA, July 14–20, 2011). Ed. by
Ganesh Gopalakrishnan and Shaz Qadeer. Lecture Notes in Computer Science 6806.
Berlin Heidelberg: Springer-Verlag, 2011, pp. 463–469. isbn: 978-3-642-22110-1. doi:
10.1007/978-3-642-22110-1_37.

[23] Ricky W. Butler. What is Formal Methods? Apr. 10, 2016. url: https://shemesh.
larc.nasa.gov/fm/fm-what.html (visited on 08/16/2019).

[24] Cristiano Calcagno and Dino Distefano. “Infer: An Automatic Program Verifier for
Memory Safety of C Programs”. In: NASA Formal Methods. Proceedings of the
Third International Symposium. (Pasadena, CA, USA, Apr. 18–20, 2011). Ed. by
Mihaela Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi. Lecture
Notes in Computer Science 6617. Berlin Heidelberg: Springer-Verlag, 2011, pp. 459–
465. isbn: 978-3-642-20398-5. doi: 10.1007/978- 3- 642- 20398- 5_33. url:
https://fbinfer.com/.

[25] Bernard A. Carré, I. M. O’Neill, D. L. Clutterbuck, and C. W. Debney. “SPADE–
The Southampton Program Analysis and Development Environment”. In: Software
Engineering Environments. Peter Peregrinus, Ltd. Stevenage. 1986.

[26] Arthur Charguéraud. “Characteristic Formulae for the Verification of Imperative
Programs”. In: Functional Programming. Proceedings of the 16th ACM SIGPLAN
International Conference. (Tokyo, Japan, Sept. 19–21, 2011). New York, NY, USA:
ACM, 2011, pp. 418–430. isbn: 978-1-4503-0865-6. doi: 10.1145/2034773.2034828.

[27] Arthur Charguéraud and François Pottier. “Machine-Checked Verification of the
Correctness and Amortized Complexity of an Efficient Union-Find Implementation”.
In: Interactive Theorem Proving. Proceedings of the 6th International Conference.
(Nanjing, China, Aug. 24–27, 2015). Ed. by Christian Urban and Xingyuan Zhang.
Lecture Notes in Computer Science 9236. Cham: Springer International Publishing,
Aug. 19, 2015, pp. 137–153. isbn: 978-3-319-22102-1.

https://doi.org/10.1016/C2013-0-10411-4
https://doi.org/10.1016/C2013-0-10411-4
https://doi.org/10.1145/227595.227603
https://doi.org/10.1145/1631716.1631721
https://doi.org/10.1145/1631716.1631721
https://doi.org/10.1007/978-3-642-22110-1_37
https://shemesh.larc.nasa.gov/fm/fm-what.html
https://shemesh.larc.nasa.gov/fm/fm-what.html
https://doi.org/10.1007/978-3-642-20398-5_33
https://fbinfer.com/
https://doi.org/10.1145/2034773.2034828

86 Bibliography

[28] Hao Chen, Xiongnan Wu, Zhong Shao, Joshua Lockerman, and Ronghui Gu. “Toward
Compositional Verification of Interruptible OS Kernels and Device Drivers”. In: Journal
of Automated Reasoning 61.1 (June 1, 2018). Ed. by Jeremy Avigad, Gerwin Klein,
and Lawrence C. Paulson, pp. 141–189. issn: 1573-0670. doi: 10.1007/s10817-
017-9446-0.

[29] David Chisnall. The Definitive Guide to the Xen Hypervisor. London, England, UK:
Pearson Education, 2008.

[30] Adam Chlipala. Certified Programming with Dependent Types: A Pragmatic Introduc-
tion to the Coq Proof Assistant. Cambridge, MA, USA: MIT Press, Dec. 6, 2013.

[31] D. L. Clutterbuck and Bernard A. Carré. “The Verification of Low-Level Code”. In:
Software Engineering journaltitle 3.3 (May 1988), pp. 97–111. issn: 0268-6961. doi:
10.1049/sej.1988.0012.

[32] David Costanzo, Zhong Shao, and Ronghui Gu. “End-to-end Verification of Information-
flow Security for C and Assembly Programs”. In: Programming Language Design and
Implementation. Proceedings of the 37th ACM SIGPLAN Conference. (Santa Barbara,
CA, USA, June 13–17, 2016). New York, NY, USA: ACM, 2016, pp. 648–664. isbn:
978-1-4503-4261-2. doi: 10.1145/2908080.2908100.

[33] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints”.
In: Principles of Programming Languages. Proceedings of the 4th ACM SIGACT-
SIGPLAN Symposium. (Los Angeles, CA, USA). New York, NY, USA: ACM, Jan. 19–
19, 1977, pp. 238–252. doi: 10.1145/512950.512973.

[34] Patrick Cousot and Radhia Cousot. “Static Determination of Dynamic Properties
of Programs”. In: Programming. Proceedings of the 2nd International Symposium.
(Paris, France, Apr. 13–15, 1976). Ed. by B. Robinet. Dunod.

[35] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve Beattie,
Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. “StackGuard: Automatic
Adaptive Detection and Prevention of Buffer-Overflow Attacks”. In: USENIX Security
Symposium. Proceedings of the 7th. (San Antonio, TX, USA, Jan. 26–29, 1998). Vol. 98.
1998, pp. 63–78.

[36] Mads Dam, Roberto Guanciale, Narges Khakpour, Hamed Nemati, and Oliver Schwarz.
“Formal Verification of Information Flow Security for a Simple ARM-Based Separation
Kernel”. In: Computer & Communications Security. Proceedings of the 2013 ACM
SIGSAC Conference. (Berlin, Germany, Nov. 4–8, 2013). New York, NY, USA: ACM,
Nov. 2013, pp. 223–234. doi: 10.1145/2508859.2516702.

[37] Mads Dam, Roberto Guanciale, and Hamed Nemati. “Machine Code Verification of a
Tiny ARM Hypervisor”. In: Trustworthy Embedded Devices. Proceedings of the 3rd
International Workshop. (Berlin, Germany, Nov. 4, 2013). New York, NY, USA: ACM,
Nov. 2013, pp. 3–12. isbn: 978-1-4503-2486-1. doi: 10.1145/2517300.2517302.

[38] Werner Damm and Holger Hermanns, eds. Computer Aided Verification. Proceedings
of the 19th International Conference. (Berlin, Germany, July 3–7, 2007). Lecture
Notes in Computer Science 4590. Berlin Heidelberg: Springer-Verlag, 2007.

https://doi.org/10.1007/s10817-017-9446-0
https://doi.org/10.1007/s10817-017-9446-0
https://doi.org/10.1049/sej.1988.0012
https://doi.org/10.1145/2908080.2908100
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/2508859.2516702
https://doi.org/10.1145/2517300.2517302

Bibliography 87

[39] Jeremy Dawson. “Isabelle Theories for Machine Words”. In: Electronic Notes in
Theoretical Computer Science 250.1 (Sept. 1, 2009), pp. 55–70. doi: 10.1016/j.
entcs.2009.08.005.

[40] Jeremy Dawson, Paul Graunke, Brian Huffman, Gerwin Klein, and John Matthews.
Machine Words in Isabelle/HOL. Version 2018. Aug. 15, 2018. url: https://
isabelle.in.tum.de/website-Isabelle2018/dist/library/HOL/HOL-Word/
document.pdf (visited on 08/22/2019).

[41] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In: Tools and
Algorithms for the Construction and Analysis of Systems. 14th International Conference.
(Budapest, Hungary, Mar. 29–Apr. 6, 2008). Ed. by C. R. Ramakrishnan and Jakob
Rehof. Lecture Notes in Computer Science 4963. Berlin Heidelberg: Springer-Verlag,
2008, pp. 337–340. doi: 10.1007/978-3-540-78800-3_24.

[42] “Detailed Models of Instruction Set Architectures: From Pseudocode to Formal Se-
mantics”. In: Automated Reasoning Workshop 2018. (Cambridge, UK). Apr. 2018.
url: https://alastairreid.github.io/papers/ARW_18/ (visited on 08/25/2019).

[43] Morris J. Dworkin. Recommendation for Block Cipher Modes of Operation: Galois/-
Counter Mode (GCM) and GMAC. Tech. rep. 800-38D. Gaithersburg, MD, USA,
Nov. 28, 2007. url: https://www.nist.gov/publications/recommendation-
block-cipher-modes-operation-galoiscounter-mode-gcm-and-gmac?pub_id=
51288 (visited on 08/26/2019).

[44] Manuel Eberl, Gerwin Klein, Tobias Nipkow, Larry Paulson, and René Thiemann, eds.
Archive of Formal Proofs. Aug. 19, 2019. url: https://www.isa-afp.org/ (visited
on 08/22/2019).

[45] David Evans and David Larochelle. “Improving Security using Extensible Lightweight
Static Analysis”. In: IEEE Software 19.1 (Jan.–Feb. 2002), pp. 42–51. issn: 0740-7459.
doi: 10.1109/52.976940.

[46] F*: A Higher-Order Effectful Language Designed for Program Verification. url:
https://www.fstar-lang.org/ (visited on 08/23/2019).

[47] Xinyu Feng, Zhong Shao, Alexander Vaynberg, Sen Xiang, and Zhaozhong Ni. Modu-
lar Verification of Assembly Code with Stack-Based Control Abstractions. Tech. rep.
YALEU/DCS/TR-1336. New Haven, CT, USA: Department of Computer Science, Yale
University, Nov. 2005. 24 pp. url: http://flint.cs.yale.edu/publications/
sbca.html.

[48] Xinyu Feng, Zhong Shao, Alexander Vaynberg, Sen Xiang, and Zhaozhong Ni. “Modular
Verification of Assembly Code with Stack-Based Control Abstractions”. In: Program-
ming Language Design and Implementation. Proceedings of the 27th ACM SIGPLAN
Conference. (Ottawa, Ontario, Canada, June 11–14, 2006). Vol. 41. PLDI 2006 6. New
York, NY, USA: ACM, June 2006, pp. 401–414. doi: 10.1145/1133981.1134028.

[49] Edward A. Feustel. “On the Advantages of Tagged Architecture”. In: IEEE Trans-
actions on Computers C-22.7 (July 1973), pp. 644–656. doi: 10.1109/TC.1973.
5009130.

https://doi.org/10.1016/j.entcs.2009.08.005
https://doi.org/10.1016/j.entcs.2009.08.005
https://isabelle.in.tum.de/website-Isabelle2018/dist/library/HOL/HOL-Word/document.pdf
https://isabelle.in.tum.de/website-Isabelle2018/dist/library/HOL/HOL-Word/document.pdf
https://isabelle.in.tum.de/website-Isabelle2018/dist/library/HOL/HOL-Word/document.pdf
https://doi.org/10.1007/978-3-540-78800-3_24
https://alastairreid.github.io/papers/ARW_18/
https://www.nist.gov/publications/recommendation-block-cipher-modes-operation-galoiscounter-mode-gcm-and-gmac?pub_id=51288
https://www.nist.gov/publications/recommendation-block-cipher-modes-operation-galoiscounter-mode-gcm-and-gmac?pub_id=51288
https://www.nist.gov/publications/recommendation-block-cipher-modes-operation-galoiscounter-mode-gcm-and-gmac?pub_id=51288
https://www.isa-afp.org/
https://doi.org/10.1109/52.976940
https://www.fstar-lang.org/
http://flint.cs.yale.edu/publications/sbca.html
http://flint.cs.yale.edu/publications/sbca.html
https://doi.org/10.1145/1133981.1134028
https://doi.org/10.1109/TC.1973.5009130
https://doi.org/10.1109/TC.1973.5009130

88 Bibliography

[50] Edward A. Feustel. “The Rice Research Computer—A Tagged Architecture”. In:
Proceedings of the 1972 Spring Joint Computer Conference. (Atlantic City, NJ, USA,
May 16–18, 1972). Vol. 40. New York, NY, USA: ACM, May 1972, pp. 369–377. doi:
10.1145/1478873.1478920.

[51] Robert W. Floyd. “Assigning Meanings to Programs”. In: Mathematical Aspects of
Computer Science 19.1 (1967), pp. 19–32.

[52] Anthony Fox. “Improved Tool Support for Machine-Code Decompilation in HOL4”.
In: Interactive Theorem Proving. Proceedings of the 6th International Conference.
(Nanjing, China, Aug. 24–27, 2015). Ed. by Christian Urban and Xingyuan Zhang.
Lecture Notes in Computer Science 9236. Springer-Verlag. Cham, Aug. 19, 2015,
pp. 187–202. doi: 10.1007/978-3-319-22102-1_12.

[53] Anthony Fox and Magnus O. Myreen. “A Trustworthy Monadic Formalization of the
ARMv7 Instruction Set Architecture”. In: Interactive Theorem Proving. Proceedings
of the First International Conference. (Edinburgh, UK, July 11–14, 2010). Ed. by
Matt Kaufmann and Lawrence C. Paulson. Lecture Notes in Computer Science 6172.
Berlin Heidelberg: Springer-Verlag, 2010, pp. 243–258. isbn: 978-3-642-14052-5. doi:
10.1007/978-3-642-14052-5_18.

[54] Aymeric Fromherz, Nick Giannarakis, Chris Hawblitzel, Bryan Parno, Aseem Rastogi,
and Nikhil Swamy. “A Verified, Efficient Embedding of a Verifiable Assembly Lan-
guage”. In: Proceedings of the ACM on Programming Languages 3.POPL (Jan. 2019),
63:1–63:30. issn: 2475-1421. doi: 10.1145/3290376.

[55] Vijay Ganesh and David L. Dill. “A Decision Procedure for Bit-Vectors and Arrays”.
In: Computer Aided Verification. Proceedings of the 19th International Conference.
(Berlin, Germany, July 3–7, 2007). Ed. by Werner Damm and Holger Hermanns.
Lecture Notes in Computer Science 4590. Berlin Heidelberg: Springer-Verlag, 2007,
pp. 519–531. isbn: 978-3-540-73368-3. doi: 10.1007/978-3-540-73368-3_52.

[56] Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J.
Stuckey. “An Abstract Domain of Uninterpreted Functions”. In: Verification, Model
Checking, and Abstract Interpretation. Proceedings of the 17th International Conference.
(St. Petersburg, FL, USA, Jan. 17–19, 2016). Ed. by Barbara Jobstmann and K. Rustan
M. Leino. Lecture Notes in Computer Science 9583. Berlin Heidelberg: Springer-Verlag,
Dec. 25, 2015, pp. 85–103. isbn: 978-3-662-49122-5. doi: 10.1007/978-3-662-
49122-5_4.

[57] Shilpi Goel. “Formal Verification of Application and System Programs Based on a
Validated x86 ISA Model”. PhD thesis. Dec. 2016. HDL: 2152/46437.

[58] Shilpi Goel, Warren A. Hunt, Matt Kaufmann, and Soumava Ghosh. “Simulation
and Formal Verification of x86 Machine-Code Programs that make System Calls”. In:
2014 Formal Methods in Computer-Aided Design. (Lausanne, Switzerland, Oct. 21–24,
2014). Ed. by Koen Claessen and Viktor Kuncak. Piscataway, NJ, US: IEEE, Dec. 18,
2014, pp. 91–98. doi: 10.1109/FMCAD.2014.6987600.

https://doi.org/10.1145/1478873.1478920
https://doi.org/10.1007/978-3-319-22102-1_12
https://doi.org/10.1007/978-3-642-14052-5_18
https://doi.org/10.1145/3290376
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-662-49122-5_4
https://doi.org/10.1007/978-3-662-49122-5_4
http://hdl.handle.net/2152/46437
https://doi.org/10.1109/FMCAD.2014.6987600

Bibliography 89

[59] Joseph Amadee Goguen and José Meseguer. “Security Policies and Security Models”.
In: Security and Privacy. Proceedings of the 1982 IEEE Symposium. (Oakland, CA,
USA, Apr. 26–28, 1982). Piscataway, NJ, US: IEEE, Dec. 15, 2014, pp. 11–11. doi:
10.1109/SP.1982.10014.

[60] Donald I. Good, Robert L. Akers, and Lawrence M. Smith. Report on Gypsy 2.05.
Tech. rep. CLI-I. Oct. 1986.

[61] David Greenaway, June Andronick, and Gerwin Klein. “Bridging the Gap: Automatic
Verified Abstraction of C”. In: Interactive Theorem Proving. Proceedings of the Third
International Conference. (Princeton, NJ, USA, Aug. 13–15, 2012). Ed. by Lennart
Beringer and Amy Felty. Lecture Notes in Computer Science 7406. Berlin Heidelberg:
Springer-Verlag, Aug. 2012, pp. 99–115. doi: 10.1007/978-3-642-32347-8_8.

[62] Armaël Guéneau, Magnus O. Myreen, Ramana Kumar, and Michael Norrish. “Verified
Characteristic Formulae for CakeML”. In: Programming Languages and Systems.
Proceedings of the 26th European Symposium on Programming. (Uppsala, Sweden,
Apr. 22–29, 2017). Ed. by Hongseok Yang. Lecture Notes in Computer Science 10201.
Berlin Heidelberg: Springer-Verlag, Mar. 19, 2017, pp. 584–610. isbn: 978-3-662-
54434-1.

[63] Heartbleed Bug. Apr. 29, 2014. url: http://heartbleed.com/ (visited on 08/22/2019).
[64] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. “Stratified Synthesis:

Automatically Learning the x86-64 Instruction Set”. In: Programming Language Design
and Implementation. Proceedings of the 37th ACM SIGPLAN Conference. (Santa
Barbara, CA, USA, June 13–17, 2016). New York, NY, USA: ACM, 2016, pp. 237–250.
isbn: 978-1-4503-4261-2. doi: 10.1145/2908080.2908121.

[65] Charles Antony Richard Hoare. “An Axiomatic Basis for Computer Programming”. In:
Communications of the ACM 12.10 (Oct. 1969). Ed. by M. Stuart Lynn, pp. 576–580.
issn: 0001-0782. doi: 10.1145/363235.363259.

[66] Charles Antony Richard Hoare. “Communicating Sequential Processes”. In: Commu-
nications of the ACM 21.8 (Aug. 1978). Ed. by Robert L. Ashenhurst, pp. 666–677.
issn: 0001-0782. doi: 10.1145/359576.359585.

[67] David Hovemeyer and William Pugh. “Finding Bugs is Easy”. In: ACM SIGPLAN
Notices 39.12 (Dec. 2004), pp. 92–106. issn: 0362-1340. doi: 10.1145/1052883.
1052895. url: http://findbugs.sourceforge.net/.

[68] Warren A. Hunt Jr. “Microprocessor Design Verification”. In: Journal of Automated
Reasoning 5.4 (Dec. 1989), pp. 429–460. issn: 1573-0670. doi: 10.1007/BF00243132.

[69] Intel 64 and IA-32 Architectures. Software Developer’s Manual. 4 vols. Intel Corpora-
tion, May 21, 2019. url: https://software.intel.com/en-us/articles/intel-
sdm (visited on 08/25/2019).

[70] Tariq Jamil. “RISC versus CISC. Why less is more”. In: IEEE Potentials 14.3 (Aug.–
Sept. 1995), pp. 13–16. issn: 0278-6648. doi: 10.1109/45.464688.

[71] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided Rea-
soning: An Approach. Berlin Heidelberg: Kluwer Academic Publishers, 2000.

https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1007/978-3-642-32347-8_8
http://heartbleed.com/
https://doi.org/10.1145/2908080.2908121
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/1052883.1052895
https://doi.org/10.1145/1052883.1052895
http://findbugs.sourceforge.net/
https://doi.org/10.1007/BF00243132
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://doi.org/10.1109/45.464688

90 Bibliography

[72] James C. King. “Symbolic Execution and Program Testing”. In: Communications of the
ACM 19.7 (July 1976), pp. 385–394. issn: 0001-0782. doi: 10.1145/360248.360252.

[73] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell,
Rafal Kolanski, and Gernot Heiser. “Comprehensive Formal Verification of an OS
Microkernel”. In: ACM Transactions on Computer Systems 32.1 (Feb. 2014), 2:1–2:70.
doi: 10.1145/2560537.

[74] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, et
al. “seL4: Formal Verification of an OS Kernel”. In: Operating Systems Principles.
Proceedings of the 22nd ACM SIGOPS Symposium. (Big Sky, MT, USA, Oct. 11–14,
2009). New York, NY, USA: ACM, 2009, pp. 207–220. doi: 10.1145/1629575.
1629596.

[75] Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek Dreyer,
and Lars Birkedal. “The Essence of Higher-Order Concurrent Separation Logic”.
In: Programming. Proceedings of the 26th European Symposium. (Uppsala, Sweden,
Apr. 22–29, 2017). Ed. by Hongseok Yang. Lecture Notes in Computer Science 10201.
Berlin Heidelberg: Springer-Verlag, Mar. 19, 2017, pp. 696–723.

[76] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson, and Giovanni
Vigna. “Automating Mimicry Attacks Using Static Binary Analysis”. In: USENIX
Security Symposium. Vol. 14. USENIX Association. 2005, pp. 161–176.

[77] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. “CakeML: A
Verified Implementation of ML”. In: Principles of Programming Languages. Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium. (San Diego, CA, USA, Jan. 22–24,
2014). New York, NY, USA: ACM, 2014, pp. 179–191. isbn: 978-1-4503-2544-8. doi:
10.1145/2535838.2535841. url: https://cakeml.org/ (visited on 08/25/2019).

[78] Stefan Lankes, Simon Pickartz, and Jens Breitbart. “HermitCore: A Unikernel for
Extreme Scale Computing”. In: Runtime and Operating Systems for Supercomputers.
Proceedings of the 6th International Workshop. (Kyoto, Japan, June 1, 2016). New
York, NY, USA: ACM, 2016, 4:1–4:8. isbn: 978-1-4503-4387-9. doi: 10.1145/
2931088.2931093.

[79] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister,
and Christian Ferdinand. “CompCert - A Formally Verified Optimizing Compiler”.
In: Embedded Real Time Software and Systems. Proceedings of the 8th European
Congress. ERTS 2016. SEE. Toulouse, France: HAL, Jan. 2016. HAL: hal-01238879.

[80] LLVM Language Reference Manual – LLVM 10 documentation. Functions. Aug. 23,
2019. url: https : / / llvm . org / docs / LangRef . html # functions (visited on
08/24/2019).

[81] LLVM Language Reference Manual – LLVM 10 documentation. Terminators. Aug. 23,
2019. url: https://llvm.org/docs/LangRef.html#terminators (visited on
08/24/2019).

https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/2560537
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/2535838.2535841
https://cakeml.org/
https://doi.org/10.1145/2931088.2931093
https://doi.org/10.1145/2931088.2931093
https://hal.inria.fr/hal-01238879
https://llvm.org/docs/LangRef.html#functions
https://llvm.org/docs/LangRef.html#terminators

Bibliography 91

[82] Anil Madhavapeddy and David J. Scott. “Unikernels: The Rise of the Virtual Library
Operating System”. In: Communications of the ACM 57.1 (Jan. 2014). Ed. by Moshe
Y. Vardi, pp. 61–69. issn: 0001-0782.

[83] Daniel Matichuk, Toby Murray, and Makarius Wenzel. “Eisbach: A Proof Method
Language for Isabelle”. In: Journal of Automated Reasoning 56.3 (Mar. 1, 2016),
pp. 261–282. doi: 10.1007/s10817-015-9360-2.

[84] Daniel Matichuk, Makarius Wenzel, and Toby Murray. The Eisbach User Manual.
Version 2018. Aug. 15, 2018.

[85] John Matthews, J Strother Moore, Sandip Ray, and Daron Vroon. “Verification
Condition Generation via Theorem Proving”. In: Logic for Programming, Artificial
Intelligence, and Reasoning. Proceedings of the 13th International Conference. (Phnom
Penh, Cambodia, Nov. 13–17, 2006). Ed. by Miki Hermann and Andrei Voronkov.
Lecture Notes in Computer Science 4246. Berlin Heidelberg: Springer-Verlag, 2006,
pp. 362–376. doi: 10.1007/11916277_25.

[86] J Strother Moore. “A Mechanically Verified Language Implementation”. In: Journal
of Automated Reasoning 5.4 (Dec. 1989), pp. 461–492. issn: 1573-0670. doi: 10.
1007/BF00243133.

[87] J Strother Moore. Piton: A Verified Assembly Level Language. Tech. rep. 1988.
[88] Magnus O. Myreen and Michael J. C. Gordon. “Hoare Logic for Realistically Modelled

Machine Code”. In: Tools and Algorithms for the Construction and Analysis of Systems.
Proceedings of the 13th International Conference. (Braga, Portugal, Mar. 24–Apr. 1,
2007). Ed. by Orna Grumberg and Michael Huth. Lecture Notes in Computer Science
4424. Berlin Heidelberg: Springer-Verlag, 2007, pp. 568–582. doi: 10.1007/978-3-
540-71209-1_44.

[89] Magnus O. Myreen, Michael J. C. Gordon, and Konrad Slind. “Decompilation into
Logic—Improved”. In: 2012 Formal Methods in Computer-Aided Design. (Cambridge,
UK, Oct. 22–25, 2012). Piscataway, NJ, US: IEEE, Feb. 19, 2013, pp. 78–81.

[90] Magnus O. Myreen, Michael J. C. Gordon, and Konrad Slind. “Machine-Code Verifi-
cation for Multiple Architectures - An Application of Decompilation into Logic”. In:
2008 Formal Methods in Computer-Aided Design. (Portland, OR, USA, Nov. 17–20,
2008). Piscataway, NJ, US: IEEE, Nov. 25, 2008, pp. 1–8. doi: 10.1109/FMCAD.2008.
ECP.24.

[91] George C. Necula. “Proof-Carrying Code”. In: Principles of Programming Languages.
Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium. (Paris, France, Jan. 15–
17, 1997). New York, NY, USA: ACM, 1997, pp. 106–119. doi: 10.1145/263699.
263712.

[92] Nguyen Anh Quynh. Capstone: Next-Gen Disassembly Framework. Aug. 7, 2014. url:
https://www.capstone-engine.org/ (visited on 07/27/2019).

https://doi.org/10.1007/s10817-015-9360-2
https://doi.org/10.1007/11916277_25
https://doi.org/10.1007/BF00243133
https://doi.org/10.1007/BF00243133
https://doi.org/10.1007/978-3-540-71209-1_44
https://doi.org/10.1007/978-3-540-71209-1_44
https://doi.org/10.1109/FMCAD.2008.ECP.24
https://doi.org/10.1109/FMCAD.2008.ECP.24
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/263699.263712
https://www.capstone-engine.org/

92 Bibliography

[93] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic. Lecture Notes in Computer Science 2283. Berlin
Heidelberg: Springer-Verlag, Jan. 2002. doi: 10.1007/3- 540- 45949- 9. url:
https://isabelle.in.tum.de/.

[94] Peter O’Hearn, John Reynolds, and Hongseok Yang. “Local Reasoning about Programs
that Alter Data Structures”. In: Computer Science Logic. Proceedings of the 15th
International Workshop. (Paris, France, Sept. 10–13, 2001). Ed. by Laurent Fribourg.
Lecture Notes in Computer Science 2142. Berlin Heidelberg: Springer-Verlag, Aug. 30,
2001, pp. 1–19. isbn: 978-3-540-44802-0. doi: doi.org/10.1007/3-540-44802-0.

[95] I. M. O’Neill, D. L. Clutterbuck, P. F. Farrow, P. G. Summers, and W. C. Dolman.
“The Formal Verification of Safety-critical Assembly Code”. In: IFAC Symposium on
Safety of Computer Control Systems 1988. (Fulda, FRG, Nov. 9–11, 1988). Vol. 21.
SAFECOMP ’88 18. Amsterdam, The Netherlands: Elsevier Ltd., Nov. 1988, pp. 115–
120. doi: 10.1016/S1474-6670(17)54540-1.

[96] Jan Obdržálek and Marek Trtík. “Efficient Loop Navigation for Symbolic Execution”.
In: Automated Technology for Verification and Analysis. Proceedings of the 9th Inter-
national Symposium. (Taipei, Taiwan, Oct. 11–14, 2001). Ed. by Tevfik Bultan and
Pao-Ann Hsiung. Lecture Notes in Computer Science 6996. Berlin Heidelberg: Springer-
Verlag, 2011, pp. 453–462. doi: doi.org/10.1007/978-3-642-24372-1_34.

[97] Martin Ouimet and Kristina Lundqvist. Formal Software Verification: Model Checking
and Theorem Proving. Embedded Systems Laboratory Technical Report ESL-TIK-00214.
Tech. rep. Cambridge, MA, USA, 2008.

[98] Scott Owens, Susmit Sarkar, and Peter Sewell. “A Better x86 Memory Model: x86-
TSO”. In: Theorem Proving in Higher Order Logics. Proceedings of the 22nd Interna-
tional Conference. (Munich, Germany, Aug. 17–20, 2009). Ed. by Stefan Berghofer,
Tobias Nipkow, Christian Urban, and Makarius Wenzel. Lecture Notes in Computer
Science 5674. Berlin Heidelberg: Springer-Verlag, 2009, pp. 391–407. isbn: 978-3-642-
03359-9. doi: 10.1007/978-3-642-03359-9_27.

[99] Scott Owens, Susmit Sarkar, and Peter Sewell. A Better x86 Memory Model: x86-
TSO. Extended Version. Tech. rep. UCAM-CL-TR-745. Version 1746. University of
Cambridge, Computer Laboratory, Mar. 2009. url: https://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-745.html (visited on 08/26/2019).

[100] Mark Probst. “Proper Tail Recursion in C”. Institute of Computer Languages, TU
Wien, Feb. 2, 2001.

[101] Proceedings of the ACM on Programming Languages 3.POPL (Jan. 2019). issn:
2475-1421.

[102] Silvio Ranise, Cesare Tinelli, and Clark Barrett. FixedSizeBitVectors | SMT-LIB The
Satisfiability Modulo Theories Library. The SMT-LIB Initiative. June 13, 2017. url:
http://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml (visited on
08/22/2019).

https://doi.org/10.1007/3-540-45949-9
https://isabelle.in.tum.de/
https://doi.org/doi.org/10.1007/3-540-44802-0
https://doi.org/10.1016/S1474-6670(17)54540-1
https://doi.org/doi.org/10.1007/978-3-642-24372-1_34
https://doi.org/10.1007/978-3-642-03359-9_27
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-745.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-745.html
http://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml

Bibliography 93

[103] Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David Hoyes, Will
Keen, Ashan Pathirane, Owen Shepherd, Peter Vrabel, and Ali Zaidi. “End-to-End
Verification of Processors with ISA-Formal”. In: Computer Aided Verification. Pro-
ceedings Part II of the 28th International Conference. (Toronto, Ontario, Canada,
July 17–23, 2016). Ed. by Swarat Chaudhuri and Azadeh Farzan. Lecture Notes in
Computer Science book 9780. Cham: Springer International Publishing, July 13, 2016,
pp. 42–58. isbn: 978-3-319-41540-6.

[104] John C. Reynolds. “Separation Logic: A Logic for Shared Mutable Data Structures”.
In: Logic in Computer Science. Proceedings of the 17th Annual IEEE Symposium.
(Copenhagen, Denmark, July 22–25, 2002). Ed. by Anne Jacobs. Piscataway, NJ, US:
IEEE, Nov. 7, 2002, pp. 55–74. doi: 10.1109/LICS.2002.1029817.

[105] Henry Gordon Rice. “Classes of Recursively Enumerable Sets and Their Decision
Problems”. In: Transactions of the American Mathematical Society 74.2 (Mar. 1953),
pp. 358–366. issn: 00029947. doi: 10.2307/1990888. JSTOR: 1990888.

[106] Ian Roessle, Freek Verbeek, and Binoy Ravindran. “Formally Verified Big Step Se-
mantics out of x86-64 Binaries”. In: Certified Programs and Proofs. Proceedings of
the 8th ACM SIGPLAN International Conference. (Cascais, Portugal, Jan. 14–15,
2019). New York, NY, USA: ACM, 2019, pp. 181–195. isbn: 978-1-4503-6222-1. doi:
10.1145/3293880.3294102.

[107] John M. Rushby. “Design and Verification of Secure Systems”. In: Operating Systems
Principles. Proceedings of the Eighth ACM Symposium. (Pacific Grove, CA, USA,
Dec. 14–16, 1981). SOSP ’81. New York, NY, USA: ACM, 1981, pp. 12–21. isbn:
0-89791-062-1. doi: 10.1145/800216.806586.

[108] John M. Rushby. Noninterference, Transitivity, and Channel-Control Security Policies.
Tech. rep. Computer Science Laboratory at SRI International, 1992.

[109] Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn Song. “Loop-
Extended Symbolic Execution on Binary Programs”. In: Software Testing and Analysis.
Proceedings of the Eighteenth International Symposium. (Chicago, IL, USA, July 19–
23, 2009). New York, NY, USA: ACM, 2009, pp. 225–236. isbn: 978-1-60558-338-9.

[110] Bastian Schlich. “Model Checking of Software for Microcontrollers”. PhD thesis. 2008.
[111] Bastian Schlich, Falk Salewski, and Stefan Kowalewski. “Applying Model Checking to

an Automotive Microcontroller Application”. In: Industrial Embedded Systems. 2007
International Symposium. (Lisbon, Portugal, July 4–6, 2007). Piscataway, NJ, US:
IEEE, Sept. 4, 2007, pp. 209–216. doi: 10.1109/SIES.2007.4297337.

[112] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O.
Myreen. “x86-TSO: A Rigorous and Usable Programmer’s Model for x86 Multiproces-
sors”. In: Communications of the ACM 53.7 (July 2010), pp. 89–97. issn: 0001-0782.
doi: 10.1145/1785414.1785443.

https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.2307/1990888
http://www.jstor.org/stable/1990888
https://doi.org/10.1145/3293880.3294102
https://doi.org/10.1145/800216.806586
https://doi.org/10.1109/SIES.2007.4297337
https://doi.org/10.1145/1785414.1785443

94 Bibliography

[113] Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. “Translation
Validation for a Verified OS Kernel”. In: Programming Language Design and Im-
plementation. Proceedings of the 34th ACM SIGPLAN Conference. (Seattle, WA,
USA, June 16–22, 2013). New York, NY, USA: ACM, 2013, pp. 471–482. isbn:
978-1-4503-2014-6.

[114] Jianqi Shi, Jifeng He, Huibiao Zhu, Huixing Fang, Yanhong Huang, and Xiaoxian
Zhang. “ORIENTAIS: Formal Verified OSEK/VDX Real-Time Operating System”. In:
Engineering of Complex Computer Systems. Proceedings of the IEEE 17th International
Conference. (Paris, France, July 18–20, 2012). Piscataway, NJ, US: IEEE, Sept. 13,
2012, pp. 293–301. isbn: 978-2-9541-8100-4.

[115] Jianqi Shi, Longfei Zhu, Huixing Fang, Jian Guo, Huibiao Zhu, and Xin Ye. “xBIL –
A Hardware Resource Oriented Binary Intermediate Language”. In: Engineering of
Complex Computer Systems. Proceedings of the IEEE 17th International Conference.
(Paris, France, July 18–20, 2012). Piscataway, NJ, US: IEEE, Sept. 13, 2012, pp. 211–
219.

[116] Jianqi Shi, Longfei Zhu, Yanhong Huang, Jian Guo, Huibiao Zhu, Huixing Fang, and
Xin Ye. “Binary Code Level Verification for Interrupt Safety Properties of Real-Time
Operating System”. In: Theoretical Aspects of Software Engineering. Proceedings of
the Sixth International Symposium. (Beijing, China, July 4–6, 2012). Piscataway, NJ,
US: IEEE, Aug. 16, 2012, pp. 223–226. doi: 10.1109/TASE.2012.46.

[117] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. “SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis”. In: 2016 IEEE Symposium on Security and Privacy. (San Jose, CA, USA,
May 22–26, 2016). Piscataway, NJ, US: IEEE, Aug. 18, 2016. doi: 10.1109/SP.2016.
17. url: https://angr.io/.

[118] Konrad Slind and Michael Norrish. “A Brief Overview of HOL4”. In: Theorem Proving
in Higher Order Logics. Proceedings of the 21st International Conference. (Montreal,
Canada, Aug. 18–21, 2008). Ed. by Otmane Ait Mohamed, César Muñoz, and Tahar
Sofiène. Lecture Notes in Computer Science 5170. Berlin Heidelberg: Springer-Verlag,
2008, pp. 28–32. doi: 10.1007/978-3-540-71067-7_6.

[119] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung Kang,
Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena. “BitBlaze:
A New Approach to Computer Security via Binary Analysis”. In: Information Systems
Security. Proceedings of the 4th International Conference. (Hyderabad, India, Dec. 16–
20, 2008). Ed. by R. Sekar and Arun K. Pujari. Lecture Notes in Computer Science
5352. Keynote invited paper. Berlin Heidelberg: Springer-Verlag, Dec. 2008. isbn:
978-3-540-89861-0.

[120] Jiaqi Tan, Hui Jun Tay, Rajeev Gandhi, and Priya Narasimhan. “AUSPICE: Auto-
matic Safety Property Verification for Unmodified Executables”. In: Verified Software:
Theories, Tools and Experiments. Revised Selected Papers from the 7th International
Conference. (San Francisco, CA, USA, July 18–19, 2015). Ed. by Arie Gurfinkel and

https://doi.org/10.1109/TASE.2012.46
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17
https://angr.io/
https://doi.org/10.1007/978-3-540-71067-7_6

Bibliography 95

Sanjit A. Seshia. Lecture Notes in Computer Science 9593. Cham: Springer-Verlag,
July 2015, pp. 202–222. doi: 10.1007/978-3-319-29613-5_12.

[121] Adam Thornton. A Brief History of the Rice Computer 1959-1971. Feb. 24, 2008.
url: https://web.archive.org/web/20080224035658/http://www.princeton.
edu/~adam/R1/r1rpt.html (visited on 08/22/2019).

[122] Cesare Tinelli. QF_UFBV | SMT-LIB The Satisfiability Modulo Theories Library. The
SMT-LIB Initiative. July 18, 2017. url: http://smtlib.cs.uiowa.edu/logics-
all.shtml#QF_UFBV (visited on 08/22/2019).

[123] Frank Tip. “A Survey of Program Slicing Techniques”. In: Journal of Programming
Languages 3 (1995), pp. 121–189.

[124] “Trustworthy Specifications of ARM v8-A and v8-M System Level Architecture”. In:
Formal Methods in Computer-Aided Design. Proceedings of the 16th International
Conference. (Mountain View, CA, USA, Oct. 3–6, 2016). Austin, TX, USA: FMCAD
Inc, Oct. 2016, pp. 161–168. isbn: 978-0-9835678-6-8. url: https://alastairreid.
github.io/papers/FMCAD_16/.

[125] Hans van Kranenburg. Xen CPUID masking. Aug. 18, 2016. url: https://tech.
mendix.com/linux/2016/08/18/xen-cpuid-masking/ (visited on 07/03/2019).

[126] Freek Verbeek, Joshua A. Bockenek, Abhijith Bharadwaj, Ian Roessle, and Binoy
Ravindran. “Establishing a Refinement Relation between Binaries and Abstract Code”.
In: Formal Methods and Models for System Design. Proceedings of the 17th ACM-IEEE
International Conference. (San Diego, CA, USA, Oct. 9–11, 2019). MEMOCODE’19.
2019.

[127] Freek Verbeek, Joshua A. Bockenek, and Binoy Ravindran. “Highly Automated Formal
Proofs over Memory Usage of Assembly Code”. Under review. 2019.

[128] Fish Wang and Yan Shoshitaishvili. “Angr – The Next Generation of Binary Analysis”.
In: 2017 IEEE Cybersecurity Development. (Cambridge, MA, USA, Sept. 24–26, 2017).
Piscataway, NJ, US: IEEE, Oct. 23, 2017, pp. 8–9. doi: 10.1109/SecDev.2017.14.

[129] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John Grosen,
Paul Grosen, Christopher Kruegel, and Giovanni Vigna. “Ramblr: Making Reassembly
Great Again”. In: Network and Distributed System Security. Proceedings of the 24th
Annual Symposium. 2017.

[130] Mark Weiser. “Program Slicing”. In: Software Engineering. Proceedings of the 5th In-
ternational Conference. (San Diego, CA, USA, Mar. 9–12, 1981). ICSE ’81. Piscataway,
NJ, US: IEEE, 1981, pp. 439–449. isbn: 0-89791-146-6. ACM: 800078.802557.

[131] Makarius Wenzel. “Isabelle/Isar—A Generic Framework for Human-Readable Proof
Documents”. In: From Insight to Proof—Festschrift in Honour of Andrzej Trybulec
10.23 (Jan. 2007), pp. 277–298.

[132] Makarius Wenzel. The Isabelle/Isar Reference Manual. Version 2018. Aug. 15, 2018.
[133] X86 psABI · hjl-tools/x86-psABI Wiki. url: https://github.com/hjl-tools/x86-

psABI/wiki/X86-psABI (visited on 08/25/2019).

https://doi.org/10.1007/978-3-319-29613-5_12
https://web.archive.org/web/20080224035658/http://www.princeton.edu/~adam/R1/r1rpt.html
https://web.archive.org/web/20080224035658/http://www.princeton.edu/~adam/R1/r1rpt.html
http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_UFBV
http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_UFBV
https://alastairreid.github.io/papers/FMCAD_16/
https://alastairreid.github.io/papers/FMCAD_16/
https://tech.mendix.com/linux/2016/08/18/xen-cpuid-masking/
https://tech.mendix.com/linux/2016/08/18/xen-cpuid-masking/
https://doi.org/10.1109/SecDev.2017.14
http://dl.acm.org/citation.cfm?id=800078.802557
https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI
https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI

96 Bibliography

[134] William D. Young. “A mechanically verified code generator”. In: Journal of Automated
Reasoning 5.4 (Dec. 1989), pp. 493–518. issn: 1573-0670. doi: 10.1007/BF00243134.

[135] Yuan Yu. “Automated Proofs of Object Code for a Widely Used Microprocessor”.
PhD thesis. University of Texas at Austin, Oct. 5, 1993.

https://doi.org/10.1007/BF00243134

Index

angr, 42
reassembly, 42
CFGEmulated, 42

objdump, 75

ABI, 3, 27–29
abstract interpretation, 80
Amazon EC2, 75
AES, 12, 17
AFP, 56
ALU, 25
angr

CFGFast, 58
AOT, 21
API, 16
ASL, 12, 13
assembly, 73

dis-, 73, 75
AST, 15

BAP, 14
basic block, 28, 73
BCD, 25
binary, 73

CAN, 11
certificate, 57
CFG, 2, 5, 6, 15, 42, 45, 48, 54, 58, 59, 64,

65, 80
CFI, 2, 57
CI, 16
CISC, 22
compilation, 21
composition, 45
CPU, 4, 15, 21, 25

CSP, 13
cutpoint, 41, 42, 46

DiL, 11, 13
DM, 76
domain, 75
DVR, 12

ELF, 28
emulator, 75
endianness

bi, 33
big, 33
little, 33

factorial, 48
FDL, 9
Floyd

invariant, 44
verification, 43, 45

FMUC, 5, 57, 58, 61, 64–67, 69–71, 73, 77,
80

formal
methods, 19
verification, 19

FPU, 13
frame

pointer, 55, 72, 73
function

black box, 71
composition, 71
return address, 55

GCC, vi, 28, 47, 50, 75
GCM, 12

97

98 Index

GPU, 22

halting condition, 44
HermitCore, 53
Hoare

logic, 19, 43
rule, 20
triple, 19, 43, 67

HOL, 11, 15, 20
hypervisor, 53, 75

IL, 15
indirection, 76
interrupt, 15
invariant, 62

propagation, 62
substitution, 62

IPC, 3
ISA, 3–6, 9–14, 17, 21–23, 27, 29, 31–33,

53, 75
Isabelle/HOL, 20
Isar, 20
ITP, 3, 10, 56, 79

JIT, 21
JVM, 10

LFP, 43, 66
linear arithmetic, 76
loop, 43, 59, 73

break, 59
continue, 59
invariant, 20, 44, 73
path explosion, 43

memory
aliasing, 34
merging, 34
model, 54
preservation, 41, 45, 72
protection, 33
region, 32, 41, 72
enclosure, 34
overlap, 34
parent, 38
separation, 34

MRR, 7, 58, 61, 73, 75, 76, 80
MSB, 23, 25

NAVSEA, iii
NEEC, iii
non-determinism, 43
normal form, 35
Nqthm, 10, 14
null termination, 53

ONR, iii
operating system

kernel, 15
operator

arithmetic, 77
bitwise, 77

OS, 5, 14–16, 53, 56, 81
overapproximation, 80

postcondition, 42
precondition, 42, 56

strengthening, 56
presimplification, 34
proof

ingredient, 57

QEMU, 75

recursion, 42, 48
redex, see reducible expression
reducible expression, 35
register, 55

accumulator, 24
base, 24
callee-saved, 47, 72
counter, 24
data, 24

return-address exploit, 75
RISC, 13, 22
ROP, 2
RTOS, 13

SCF, 57–60, 63, 65–67, 70, 73, 75–77,
80

semantics, 62
assembly, 60
axiomatic, 19

Index 99

separation kernel, 14
separation logic, 72

frame rule, 2, 72
SIMD, 27, 76
SLOC, 6, 17
SMT, 12, 14, 15, 58, 61
SPADE, 9, 10
SSE, 32
stack, 55

buffer overflow, 73
canary, 73
frame, 72
pointer, 46, 55, 73

state
predicate, 43

state part, 32
STP, 14, 15
symbolic execution, 41, 65

halting condition, 43, 46
machine model, 32

rewrite rule, 19
run function, 43
step function, 32

tail call optimization, 28
TCB, 4, 14, 47, 58, 79
transition relation, 65

unikernel, 53

VC, 10, 12, 20, 31, 80
VCG, 5, 9, 12, 17, 20, 57, 58, 70
verification

effort, 58
verified compilation, 14
VM, 53, 75
VMM, 75
von Neumann model, 32

Xen, 75

Z3, 77

	Title Page
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Acronyms
	Nomenclature
	Introduction
	Motivation
	Security
	Composition
	Concurrency

	Challenges
	Assembly-Level Verification
	Challenges
	Current Approaches to Assembly Verification

	Contributions
	Control-Flow-Driven Verification
	Syntax-Driven Verification

	Organization of Dissertation

	Related Work
	Assembly-Level Verification
	Hardware Verification
	Integrated Assembly-Level Verification Efforts
	Verified Compilation
	Non-Formal Static Analysis
	Summary

	Background
	Formal Methods
	Symbolic Execution
	Hoare Logic
	Theorem Proving

	Assembly Language
	The x86-64 Instruction Set Architecture
	The System V AMD64 Application Binary Interface
	GCC
	Basic Blocks
	Tail Call Optimization

	Summary

	Symbolic Execution
	Machine Model
	Memory Model
	Restrictions of the Model

	Rewrite Rules
	Memory Aliasing
	Rewrite Rules for Memory

	Summary

	Control-Flow-Driven Verification
	Overview of Methodology
	Formal Definitions
	Symbolic Execution for CFG-Driven Verification
	Hoare Triples for Memory Preservation
	Floyd Invariant Foundation
	Definition of Memory Preservation

	Composition
	Intra-Function
	Function Calls

	Examples
	Non-recursive Loop Example: pow2
	Recursion: Factorial

	Application: HermitCore
	Functions Analyzed

	On Usability
	Defining the Invariant
	Strengthening the Precondition
	Finishing the Proof

	Summary

	Syntax-Driven Verification
	FMUC Generation
	Control Flow Extraction
	Symbolic Execution for Generation
	Invariant Generation

	FMUC Verification
	Syntactic Control Flow in Isabelle/HOL
	Symbolic Execution for Verification
	Per-Block Verification
	Function Body Verification
	Composition

	Full Example
	Application: Xen Project
	Summary

	Conclusions
	Contributions Revisited
	Control-Flow-Driven Verification
	Syntax-Driven Verification

	Proposed Post-Preliminary Exam Work
	Strengthen Invariants
	Model a More Realistic Memory Model

	Bibliography
	Index

